Dissecting GeoSparkSim: A Scalable Microscopic Road Network Traffic Simulator in Apache Spark

Abstract

Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install Global Positioning System(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale data. Some simulators can generate traffic in parallel but do not well balance the load among machines in a cluster. (2) Granularity: many simulators do not consider microscopic traffic situations including traffic lights, lane changing, car following. This paper proposed GeoSparkSim, a scalable traffic simulator which extends Apache Spark to generate large-scale road network traffic datasets with microscopic traffic simulation. The proposed system seamlessly integrates with a Spark-based spatial data management system, GeoSpark, to deliver a holistic approach that allows data scientists to simulate, analyze and visualize large-scale urban traffic data. To implement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle partitioning method to partition vehicles among different machines such that each machine has a balanced workload. The experimental analysis shows that GeoSparkSim can simulate the movements of 300 thousand vehicles over a very large road network (250 thousand road junctions and 300 thousand road segments) and outperform the existing competitors.

Publication
In Distributed and Parallel Databases, DAPD
Jia Yu
Jia Yu
Co-founder

Jia Yu is a co-founder of Wherobots Inc. and leads its engineering team. Jia is the creator of Apache Sedona and was a Tenure-Track Assistant Professor of Computer Science at Washington State University from 2020 to 2023. Jia’s research interests include database systems, distributed data systems and geospatial data management.

Mohamed Sarwat
Mohamed Sarwat
Assistant Professor

Mohamed Sarwat is an assistant professor of computer science at Arizona State University. His general research interest lies in developing robust and scalable data systems for spatial and spatiotemporal applications.

Related