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Mobile devices loT sensors
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https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/

https://iot-analytics.com/state-of-the-iot-update-q1-g2-2018-number-of-iot-devices-now-7b/

https://earthdata.nasa.gov/about/eosdis-cloud-evolution
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Climate monitoring

science for a changing world
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Spatial data science pipeline "

Spatial visualization
Spatial data mining
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Interactive visualization dashboard”

. Tableau, ArcGlS, ...
. Different population interactively

. Interactive analytics support
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Interactive visualization dashboard”

- Problem on big spatial data

A
. Step 1: DB query -

tion time

® Several minUteS § —'T% Visualize [Tableau] [ ArcGIS ] [Zeppelin] “aa
- Increase with data size 1| L L
2 | E
. Step 2: Visualize results 35
& _% Query | PostGIS || MySQL || SparksQL | - l
- Long or crash 8

. Tableau / Google Maps: stuck at 100 MB
for heat map



Sampling techniques

People may tolerate some accuracy
loss for visualization
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Sample first :
. Ignore important patterns ; s
Online sample after every query a1
9| & : :
. Sample on the fly 1 I : | T : I
: (—L; . SQL Result | e Result I SQL Sampling
- Viz fast and accurate S ¢ , 1 | , 1
d ; = | . | Result
5 Query still slow F . Pre-built Sample
L & | 5[ Query [ PostGis ][ MysQL [ sparksQL | .-
& S
Q 5 (a) No sample 1 (b) SampleFirst [(c) SampleOnThekly

Yongjoo Park, Michael J. Cafarella, Barzan Mozafari: Visualization-aware sampling for very large databases. ICDE 2016: 755-766

Tao Guo, Kaiyu Feng, Gao Cong, Zhifeng Bao; Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration. SIGMOD Conference 2018: 567-582
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Existing stratified sampling tech™

. Carefully create a stratified sample

\ A X

WHERE method = "'CASH’

. Consider different filter selections / SRR SN,
Dispute 2

By passenger count
& payment method

.  Sample+Seek, BlinkDB, SnappyData

. Make the returned aggregates Byp'asse,,ge,wﬂﬁé/ﬁf
accurate (SUM, AVG, COUNT) oo (TP

[5, 10) | //;;; :

. Example: filter selections -> o 0 e

Null

hypercube (selection space) Ty o s il

Null

Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, Chi Wang: Sample + Seek: Approximating Aggregates with Distribution R ' ‘
Precision Guarantee. SIGMOD Conference 2016: 679-694 eq U | FES a Sam p e

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, lon Stoica: BlinkDB: queries with bounded errors and
bounded response times on very large data. EuroSys 2013: 29-42 pe I~ q e |">/

Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik Chakraborty, Hemant Bhanawat,
Kishor Bachhav: SnappyData: A Unified Cluster for Streaming, Transactions and Interactice Analytics. CIDR 2017
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Tabula: sampling mlddleware system

Interactive analytics on dashboard
Local samples for all future queries
. All cells in the cube

Return a sample for every interaction

Never go back to the raw data
Materialized sampling cube

- Huge storage overhead

- Long construction time
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System design philosophy "

. A Sampllng mlddleware SyStem New York City Taxi Trips Dashboard

Linear regression Histogram

Rate Code
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- Plug and play

-  No change to front-end dashboard
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. Pluggable function for sample quality oS :

- Domain experts know their needs

‘ Passenger Count

.+ Support various analytics apps
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Reduce the storage overhead "

Partially materialized sampling cube I_;'_j Global sample

- Draw a global sample first

. Use It whenever it Is possible

- Only draw local samples for
low-accuracy queries (cells)

CREATE TABLE SamplingCube AS

SELECT D, C, M, SAMPLING(*,8) AS sample
FROM nyctax

GROUPBY CUBE(D, C, M)

HAVING loss(pickup, Sam_global ) > 6
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Reduce the storage overhead ™

- Low accuracy query

. If use global sample as the query result, the produced viz
will exceed accuracy loss threshold

Raw query result @ Global sample Raw query result Global sample
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Reduce the storage overhead "

. Can we reduce even more”?
. Sample selection technique
. Some samples look like each other

. By passenger count
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Accuracy loss function

CREATE TABLE SamplingCube AS
SELECT D, C, M, SAMPLING(*,8) AS sample
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HAVING loss(pickup, Sam_global ) > 6

lewark
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. User Defined accuracy loss threshold 6

. [he sample received by the dashboard never exceeds 6

. User Defined accuracy loss function
- Domain experts know their own needs

- Fit Iin different scenarios, heat map, linear regression...
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Accuracy loss function

. Algebraic aggregate function

- The function can be computed based on several functions In
Its sub-domains

. Common: Count, Sum, AVG, Min, Max, ...

. Beneficial to the cube initialization
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Sampling funCtion University

: : CREATE TABLE SamplingCube AS
T'he tunction draws the local SELECT D, C, M, SAMPLING(*8) AS sample

sample for low-accuracy query FROM nyctax
GROUPBY CUBE(D, C, M)

. Generic for diff loss functions  HAVING loss(pickup, Sam_global ) > 6

- Produce a sample which has o
loss < 6 —
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Concepts are clear and
Storage overhead is reduced, but...
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Reduce the init construction time-

iy : CREATE TABLE SamplingCube AS
- Nalve construction SELECT D, C, M, SAMPLING(*,8) AS sample

. : - FROM nyctaxi
- Exponentially with num attributes .5/ ray CUBE(D, C, M)

HAVING loss(pickup, Sam_global ) > 6

. 2™n GroupBYy, n = num attributes

 Dry-run algorithm

- Dry run stage: detect the low-
accuracy queries

- Real run stage: only run a few
GroupBYy if necessary




. Heat map: dashboard on
Spark

. 200GB NYCtaxi, 5 columns,

17 K queries (cells)

. Sample first, sample on the
fly, POlsam

. Tabula: query time = 300
ms, viz time = 400 ms
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Performance: Execution time ™
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Tabula performance

Execution time

Linear regression AVG
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Performance: Accuracy loss "

. SampleFirst: extremely bad,

omitted

= 3¢ . |
. Tabula and Sample on the fly = £ Sample T
guarantee the accuracy loss §2k ¥ ¥ Tabula
gadd-d o
SRIGREEER e .
SOkt .-
g f-t 14
2k 1k 0.5k 0.25k

Accuracy loss threshold 8 (meter)
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. Tabula: sampling middleware for visualization dashboard
. Interactive performance

. Plug and play solution

. Deterministic accuracy loss guarantee

- User-defined accuracy loss with algebraic property

- Low storage overhead and quick construction



