GEOSPATIAL DATA MANAGEMENT IN APACHE SPARK

Presented by:
Jia Yu
Mohamed Sarwat

Outline

Manage Spatial Data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

Geospatial Data

· Mobile devices - 4.68 billion in 2019

Geospatial Data

· IoT sensors in Smart City: 7 billion in 2019

Geospatial Data

· Climate monitoring: 22 PB satellite imagery data

Raster array format: GeoTiff and HDF format

Land, Ocean, Atmosphere data from spacecraft

MODIS Land Surface Temperature

Geospatial Data Frameworks

· Classic - single machine DBMS or GIS tools

Geospatial Data Frameworks

- · Single machine solutions suffer from the scalability issue
- · In Database community, something is happening..
 - Parallel execution
 - In-memory computation

New DBMS Approaches

- Parallel execution
 - GPU acceleration

Cluster (Distributed) Computing Approaches

Manage Spatial Data in Spark? University

- · No spatial data type support
- No spatial index
- No spatial query

Not that easy!

Outline

Big geospatial data

Manage spatial data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

Spark in a Nutshell

Resilient Distributed Dataset

- · Intermediate data in-memory
- Directed Acyclic Graph (DAG) scheduler
- Spark SQL / DataFrame
- Spark Structured Streaming
- · Spark GraphX / GraphFrame

Spark in a Nutshell

- Action / Transformation
 - · Action: Count, Take
 - Transformation: yield new RDD, such as map, filter, reduce, join, GroupBy

Next stage

Spatial in Spark: Design Goal

Reduce wide dependencies

Speed up local computation

Reduce the Memory Footprint

Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

Load Data Into Spark RDD

- · Loading data into Spark RDD or DataFrame
 - · Partition data into 64 MB chunks using Hash partitioner
 - · If the data is already partitioned, keep the original partitions

- · Repartition data in RDD
 - · Partition by spatial proximity
 - · Still achieve load balance
 - · API: CustomPartitioner

Spatial data partitioner

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective and beyond." *GeoInformatica* (2018): 1-42.

- · Spatial partitioning algorithm
 - Randomly sample the RDD
 - · Build a KD-Tree/Quad-Tree/R-Tree on the sample
 - · Take the leaf nodes of the tree as the global partition file
 - · Re-partition the RDD according to the partition file

- Common spatial partitioning grids
 - · Space partition: Uniform, KD-Tree, Quad-Tree
 - · Data partition: R-Tree, an overflow partition due to sampling

Xie, Dong, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. "Simba: Efficient in-memory spatial analytics." In *Proceedings of the 2016 International Conference on Management of Data*, pp. 1071-1085. ACM, 2016.

- · Other common spatial partitioning grids
 - · Voronoi diagram, Z-curve, Hilbert-curve

Magellan: https://github.com/harsha2010/magellan

Whitman, Randall T., Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. "Spatio-Temporal Join on Apache Spark." In SIGSPATIAL 2017.

- · Objects that intersect many boundaries
 - · Duplicate them to all intersected partitions
 - · Need duplicate removal after queries

- DAG and data shuffle:
 - · Each spatial partitioning is a wide dependency
 - · Wide dependency will incur a data shuffle

Wide dependency

- Performance
 - · Measured using spatial join query
 - · Join with 171 thousand polygons
 - NYCtaxi: 1.3 billion points
 - OSMobject: 263 million polygons
 - TIGERedges: 72.7 million line strings
- Cluster settings: Four workers, one master,
 192 cores, 400 GB Memory

Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

- Traditional indexing
 - · Not work because of the huge storage overhead
 - · Data in different partitions
- · Distributed spatial indexing
 - Global index
 - Local index

- Global index
 - · Remember the tree built for spatial partitioning?
 - Two birds, one stone!

· Use it to index partition bounding boxes

· Lightweight, on the master machine

· No entries for individual records

- Local indexing
 - On each RDD partition
 - · R-Tree, Quad-Tree,...
 - · Has entries for individual records
 - Queries that use spatial index <u>requires a refinement phase based</u> on the real shapes of objects

- · Partition range index (Spatial Hippo, spatial bloom filter)
 - · Global index only indexes bounding boxes not internal content
 - · Queries sometimes still go to false positive partitions

Tang, Mingjie, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and Walid G. Aref. "Locationspark: A distributed in-memory data management system for big spatial data." PVLDB 2016

Yu, Jia, and Mohamed Sarwat. "Indexing the Pickup and Drop-Off Locations of NYC Taxi Trips in PostgreSQL–Lessons from the Road." In *International Symposium on Spatial and Temporal Databases*, pp. 145-162. Springer, Cham, 2017.

- · Partition range index (Spatial Hippo, spatial bloom filter)
 - Reduce false positive partitions

PartitionID	Bucket(I,I)	Bucket(1,2)	Bucket(1,3)	
0	_	0	0	
	Ο	_	Ο	
2	Ο	_	Ο	
3	0	0		

- · DAG and data shuffle: I RDD transformations
 - Global indexing: done with the spatial data partitioning (including partition range index)
 - · Local indexing: Map per Partition, Narrow dependency

- · Performance on different local indexes
 - Measured using spatial range query
 - Range area from 1% to 16%
 - OSMobject: 263 million polygons
- Cluster settings: Four workers, one master, 192 cores, 400 GB Memory

Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

Spatial Queries

- · Spatial queries should utilize spatial partitioning and spatial indexing
- · Cache the indexed spatial partitioned RDD
- The cached RDD cannot be updated. It is expected to be used many times

Spatial Queries

· Spatial range query: a straightforward way

Spatial Range Query

- · Prune partitions based on the global index, on master machine
- · Prune partitions using partition range index, on master machine
- · Go to partitions and check local indexes
- · API: rdd.PartitionPruningRDD

Tang, Mingjie, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and Walid G. Aref. "Locationspark: A distributed in-memory data management system for big spatial data." PVLDB 2016

Spatial Range Query

- · DAG and data shuffle: I RDD transformations
 - · Checking global indexing -> on master machine
 - · Checking local indexing -> a MapPartition operation, no shuffle

Load Spatial Data in Batches

- · You are generally tight on memory budget
- Spark needs a great deal of memory

- · Use a sliding window to load spatial data in batches
- Sliding window: size = num of partitions, decide it based on mem

Baig, Furgan, Hoang Vo, Tahsin Kurc, Joel Saltz, and Fusheng Wang. "Sparkgis: Resource aware efficient in-memory spatial query processing." SIGSPATIAL 2017

Load Spatial Data in Batches

- · Use a sliding window to load spatial data in batches
- Load a partition only if its bounding box overlaps query predicate

- · A set of objects (gas station), a set of polygons (state boundaries)
- · Find gas stations in each state

State boundary

- · Distance join query, similar to spatial join
- · Find gas stations within I mile distance of each grocery
- Add distance buffer to each grocery = spatial join query

- Algorithm
 - ZipPartition
 - · Local index-nested loop join
 - · Local de-duplication using the reference point

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective and beyond." *GeoInformatica* (2018): 1-42.

Dittrich, J-P., and Bernhard Seeger. "Data redundancy and duplicate detection in spatial join processing." In ICDE, 2000.

Spatial Join Query Algorithm

- ZipPartition
 - · Both RDDs should be partition by the same way
 - One can have local index

Spatial Join Query Algorithm

· Local index-nested loop join

ForEach (state) in local states
Search local index on gas station

- · Local de-duplication using the reference point
 - · Spatial partitioning introduces duplicates
 - · Need to remove them without incurring data shuffle!

Spatial Join Query Algorithm

- Reference point
 - · Query results with duplicates
 - · (Pa, Pb) (Pa, Pb) (Pa, Pb) (Pa, Pb)
 - · Compute the intersection of Pa and Pb Grid 3
 - Take Reference Point(maxX, maxY) of intersection
 - Report (Pa, Pb) in a partition only if reference point is within the boundary of this partition

DAG and data shuffle: 3 RDD transformations

Spatial K-Nearest Neighbor

Selection + Sorting phase

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective and beyond." *GeoInformatica* (2018): 1-42.

Spatial K-Nearest Neighbor

- DAG and data shuffle: 2 RDD transformations
 - · Local Top K selection: Map operation, Narrow dependency

· Global sorting: Wide dependency

Narrow dependency

Wide dependency

Spatial K-Nearest Neighbor

- · Why not use global index to prune partitions?
 - · Query accuracy is not guaranteed
 - · KNN might be in other partitions
- The correct spatial partitioning for KNN should have a K-element buffer and repartition RDD for every KNN query

Too expensive

Some results might be in Arizona partition!

Spatial KNN Join

• Find the nearest 3 gas stations for each grocery

Spatial KNN Join

- Spatial partitioning: a distance buffer for each partition such that each query point can find its KNN in one RDD partition.
- Local KNN

Chatzimilioudis, Georgios, Constantinos Costa, Demetrios Zeinalipour-Yazti, Wang-Chien Lee, and Evaggelia Pitoura. "Distributed in-memory processing of all k nearest neighbor queries." *IEEE TKDE* 2016

Xie, Dong, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. "Simba: Efficient in-memory spatial analytics." In SIGMOD, 2016.

Spatial KNN Join

DAG and data shuffle: 2 RDD transformations

Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

Optimization

- Query optimization
 - · Distributed spatial join VS broad-cast spatial join
 - · One side of spatial join is smaller, send it to all RDD partitions

- · What is a serializer?
 - Object -> byte array -> Object

 Byte array
- · When is a serializer used?
 - Cache RDD into memory
 - · Shuffle objects across the cluster

- · Why do we need a custom serializer for spatial objects?
 - · Spatial objects are very complex, tons of coordinates
 - · Spark default Java and Kryo serializer are not efficient
 - · Size according to GeoSpark experiment
 - · 3 times smaller than Spark default size
 - · 20 times faster serialization
 - 5 times faster deserialization

- · How to write a spatial object serializer?
 - Define a rule to serialize heterogeneous spatial types into a byte array. For example, borrow the definition of Shapefile or WKB
- · How to write a spatial index serializer?
 - · Use a regular tree traversal algorithm to traverse the tree
 - · Note the child node size because an index is not a full tree

- · How to add a serializer to Spark?
 - · Write a register via Kryo
 - · Register it when creating Spark session

```
var sparkSession = SparkSession.builder()
.appName("myAppName")
// Enable GeoSpark custom Kryo serializer
.config("spark.serializer", classOf[KryoSerializer].getName)
.config("spark.kryo.registrator", classOf[GeoSparkKryoRegistrator].getName)
.getOrCreate()
```


Manage Spatial Data

Spatial indexing

Spatial queries

Optimization

Language, spatial object support

Language

- · Implement the system in what language?
 - Scala
 - Spark is written in Scala
 - Functional programming by nature

- · No learning curve, Scala/Java functions can call each other
- Cannot modify Spark kernel
- Cannot add UserDefinedType and query optimization
- Python
 - Python code connect to Spark via Py4j
 - Needs Python spatial object handler

Spark Interface

- Spark interface
 - · RDD: easy to customize, hard to use
 - · DataFrame: easy to use, hard to customize
 - Spatial SQL
 - User Defined Type
 - · Indexing and spatial partitioning
 - Optimized join strategy

Integrate With Dataframe

- Spatial SQL: SQL-MM3, Simple Feature Access
 - · SQL-MM3: PostGIS, GeoSpark, GeoMesa...
 - ST_Contains, ST_Within
 - Simple Feature Access
 - · Contains, Within

```
SELECT superhero.name
FROM city, superhero
WHERE ST_Contains(city.geom, superhero.geom)
AND city.name = 'Gotham';
```

- · Compatible with each other in most cases
- Implement these functions in Spark expression (not UDF)

- - · Unary, binary, ternary
 - Each AST (Abstract Syntax Tree) node is a Spark expression
 - Allow the following features
 - Code generation
 - Output data type
 - · Fuse into the Catalyst optimizer

https://github.com/DataSystemsLab/GeoSpark/tree/master/sql/src/main/scala/org/apache/spark/ sql/geosparksql/expressions

Integrate With Dataframe User Defined Type Each spatial object and index must be a UDT in Dataframe

- Spark provides a developer API
- · The spatial object UDT must be based on a primitive type: Array
- Must provide the serialization method

UDT code snippet from GeoSpark

```
private[sql] class GeometryUDT extends UserDefinedType[Geometry] {
 override def sqlType: DataType = ArrayType(ByteType, containsNull = false)
 override def userClass: Class[Geometry] = classOf[Geometry]
  override def serialize(obj: Geometry): GenericArrayData = {
   new GenericArrayData(GeometrySerializer.serialize(obj))
  override def deserialize(datum: Any): Geometry = {
   datum match {
      case values: ArrayData => {
       return GeometrySerializer.deserialize(values)
  case object GeometryUDT extends GeometryUDT
```

Integrate With Dataframe Arizona Significant Control of Control of

- Indexing
 - Each local index is a big UDT. Each partition has one UDT (row).
 - · No way to plug the global index to Catalyst physical plan
- Spatial partitioning
 - · Cannot be done via regular DataFrame API
 - · Use DataFrame's RDD API to do spatial partitioning

Integrate With Dataframe Arizona State University Optimized Spatial Join Strategy

- · Inject spatial join query
 - Overwrite Spark strategy (physical plan)
 - · Use pattern-matching to capture spatial join pattern

Join pattern-matching snippet from GeoSpark

```
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
 // ST_Contains(a, b) - a contains b
 case Join(left, right, Inner, Some(ST_Contains(Seq(leftShape, rightShape)))) =>
   planSpatialJoin(left, right, Seq(leftShape, rightShape), false)
 // ST_Intersects(a, b) - a intersects b
 case Join(left, right, Inner, Some(ST_Intersects(Seq(leftShape, rightShape)))) =>
   planSpatialJoin(left, right, Seq(leftShape, rightShape), true)
 // ST_WITHIN(a, b) - a is within b
 case Join(left, right, Inner, Some(ST_Within(Seq(leftShape, rightShape)))) =>
   planSpatialJoin(right, left, Seq(rightShape, leftShape), false)
  // ST_Overlaps(a, b) - a overlaps b
 case Join(left, right, Inner, Some(ST_Overlaps(Seq(leftShape, rightShape)))) =>
   planSpatialJoin(right, left, Seq(rightShape, leftShape), false)
 // ST_Touches(a, b) - a touches b
 case Join(left, right, Inner, Some(ST_Touches(Seq(leftShape, rightShape)))) =>
   planSpatialJoin(left, right, Seq(leftShape, rightShape), true)
 // ST_Distance(a, b) <= radius consider boundary intersection</pre>
 case Join(left, right, Inner, Some(LessThanOrEqual(ST_Distance(Seq(leftShape, rightShape)), radius))) =>
   planDistanceJoin(left, right, Seq(leftShape, rightShape), radius, true)
```

Integrate With Dataframe Optimized Spatial Join Strategy Register the new join strategy using its

University

- - sparkSession.experimental.extraStrategies = JoinQueryDetector

```
SELECT *
FROM polygondf, pointdf
WHERE ST_Contains (polygondf.polygonshape, pointdf.pointshape)
```

Captured join query plan

```
== Physical Plan ==
RangeJoin polygonshape#20: geometry, pointshape#43: geometry, false
:- Project [st polygonfromenvelope(XXX) AS polygonshape#20]
 +- *FileScan csv
+- Project [st_point(XXX) AS pointshape#43]
   +- *FileScan csv
```

iginal join query plan

```
== Physical Plan ==
BroadcastJoin polygonshape#20: geometry, pointshape#43: geometry, false
:- Project [st polygonfromenvelope(XXX), mypolygonid) AS polygonshape#20]
: +- *FileScan csv
+- Project [st point(XXX) AS pointshape#43]
   +- *FileScan csv
```


Outline

SOCIETM

Big geospatial data

Manage spatial data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

Manage Spatial-Temporal Data Arizona State Manage Spatial-Temporal Data Parizona State Manage Spatial - Temporal Data Parizona - Tempora

What is spatial-temporal data?

Donald J. Trump @ @realDonaldTrump	Following	
Why would Kim Jong-un insult me by calling me "old," when I would NEVER call him "short and fat?" Oh well, I try so hard to be his friend - and maybe someday that will		
happen! 4:48 PM - 11 No From Vietnam		
245,389 Retweets 581,378 Likes 😵 🌑 🥏 🚄 🚯 🤿	₩ ((*)	

Twitter	Location	Timestamp	Content
	Point(14.315424, 108.339537)	11/11/2017 16:48	"Why would"
2	•••		
3		1 1 1	

· What is a spatial-temporal query?

```
SELECT *
FROM tweets t
WHERE ST_Contains(t.loc, US) AND timestamp BETWEEN 11/1/2017 AND 11/30/2017
```

- · Why do we need to care spatial-temporal data?
 - · Temporal filter is done in a table scan. Inefficient!
 - · Spatial data distribution / shape changes over time (Trajectories!)

Spatial-Temporal Partitioning University

- · Partition by spatial and temporal proximity / achieve load balance
 - · Randomly sample the RDD and put it on the master
 - · Build the global index / partition boundaries on the sample
 - · Apply partitions....
- · How to partition data by spatial and temporal attributes together?

- Temporal partitioning
 - Uniform granularity
 - Load-balanced

I hour
I hour
I hour

I day
I day
I day
I day

I month
I month
I month
I month

Compute Temporal and Spatial partitions separately

Whitman, Randall T., Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. "Spatio-Temporal Join on Apache Spark." In SIGSPATIAL 2017.

Spatial-Temporal Partitioning University

- Spatial partitioning
 - · Compute the spatial boundaries using KD-Tree, Quad-Tree,...

Spatial-temporal partitions

Spatial-Temporal Partitioning University

· What if the spatial data distribution changes over time?

Alarabi, Louai, Mohamed F. Mokbel, and Mashaal Musleh. "St-hadoop: A mapreduce framework for spatio-temporal data." *GeoInformatica* 22, no. 4 (2018): 785-813.

Spatial-Temporal Partitioning University

- · First, generate temporal partitions on the sample
- · Then, create spatial partitions for each temporal partition
- · Local spatial index is still built on each spatial-temporal partition

Spatial-Temporal Queries

- · Spatial-temporal range query
 - · Global index: temporal filter, then spatial filter
 - Prune partitions
 - Query remaining local indexes
- · Spatial-temporal join query
 - Partition both datasets in the same way
 - · Zip partitions by ID
 - Local join

Adaptive spatial partitions
Global index

Trajectories Management

- · Trajectories are common but special
 - · Very long and cross half of the region
 - Many overlapped segments
 - Have directions
 - · Similarity (NN) queries, not range

Trajectories Management

- · Most components mentioned before fail
 - · Spatial data partitioning doesn't work
 - · Numerous duplicates because of long distance and overlaps
 - · Regular spatial index doesn't work
 - · Only index MBR and trajectories' MBR are large in general
 - Distance / similarity metrics are different

They are close in terms of the nearest points

But not similar at all

Trajectories Partitioning

- · Partition based on segments of trajectories (Xie et al, VLDB 17)
 - · A trajectory is split and put into different RDD partitions
 - · Need to reconstruct some trajectories at the end
- · Partition based on pivot points (Shang et al, SIGMOD 18)
 - · Pivot points are representative points on a trajectory
 - · A trajectory is put into the same partition / no reconstruction
 - · No longer based MBR of trajectories

Xie, Dong, Feifei Li, and Jeff M. Phillips. "Distributed trajectory similarity search." In VLDB 2017
Shang, Zeyuan, Guoliang Li, and Zhifeng Bao. "Dita: Distributed in-memory trajectory analytics." In SIGMOD 2018.

Trajectories Indexing

- Global index
 - · Segmented based: MBR of segments, spatial partitioning
 - · Pivot points based: special index on pivot points
- Local index
 - · Segmented based: regular R-Tree index
 - · Pivot point based: special index on pivot points

Similarity Search / Join

- Similarity search
 - · Given a query trajectory, find K similar trajectories
- Similarity join
 - · Given a set of trajectories, find K similar traj for each of them

Similarity join

Distance Metric

- Dynamic Time Warping (DTW)
- · Longest common subsequence distance (LCSS)
- Frechet distance

Perform segment-wise comparison

Outline

Big geospatial data

Manage spatial data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

Spatial Visual Analytics

- · Spatial visualization is important
- · Existing tools can exhibit excellent visual effects but cannot scale

Spatial Visual Analytics

- · Scalable visualization: visualize BILLION objects on Gigapixel map
- · Customizable visualization: manipulate pixels at scale

Spatial Visual Analytics

- · Rasterize vector shapes to pixels (with weights)
 - Or, load from GeoTIFF/NetCDF/HDF: array-format spatial

observations

- · Aggregate pixels (with weights)
- Render color

Geotrellis: https://geotrellis.io/

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "GeoSparkViz: a scalable geospatial data visualization framework in the apache spark ecosystem." In SSDBM, 2018.

Pixel Array Data Partitioning

- · Each partition is a map tile
- Each map tile is X*X pixel array

1	2	3	2	1
2	4	5	4	2
3	5	6	5	3
2	4	5	4	2
1	2	3	2	1

A single tile

RDD and Zoom Levels

- · Zoom levels: each level consists of a set of map tiles
- Each RDD is a zoom level.

Zoom levels

Level	#Tiles
0	l
I	4
2	16
3	64
• • •	• • •

Tiles per level

Map Visualization Pipeline

· Visualization pipeline and DAG stages

Manipulate Raster Array Data University

Map algebra operations

Local operations

1	1	1	1	1
1	1	1	1	1
1	1	0	1	1
1	1	1	1	1
1	1	1	1	1

Focal operations

Zonal operations

A Map Algebra Example

Local operation on temperature observations from NASA MODIS

Figures and examples from https://gisgeography.com/map-algebra-global-zonal-focal-local/

Local Operation

- · Algorithm: two pixel RDDs A and B, partitioned in the same way
 - · ZipPartitions: Zip A and B
 - · MapPartition: Local pixel manipulation

Focal Operation

- · Algorithm: each pixel aggregates with its neighbors
 - Spatial partition buffered Pixels
 - · Make sure each pixel can find its neighbors
 - · MapPartition: Local aggregation in each partition

	Stage						
		RDD	TileI		Tile2	Tile3	
Na	irrow			L			
depe	endency						
		RDD	TileI		Tile2	Tile3	

1	1	1
1	6	1
1	1	1

Pixel with I pixel buffer

1	1	1	1	1
1	1	1	1	1
1	1	0	1	1
1	1	1	1	1
1	1	1	1	1

Zonal Operation

- · Algorithm I: Join vector polygons with raster pixels
 - · Rasterize each polygon to a mask layer
 - · Broadcast it to each pixelRDD partition
 - · Find matched pixels on each partition
 - · Similar to a range query. Loop every polygon, not scalable

Zonal Operation

- Algorithm 2: Scalable
 - · Convert each pixel back to a spatial point
 - · Then use spatial join between polygons and points

Spatial Data Mining Example

- · Spatial co-location pattern mining in Spark
 - · Use spatial join to build a whole data mining application
 - · Use map algebra to visualize the result
 - · Taxi pick ups (1 billion)
 - · NYC landmarks (300, airports, hospitals..)

https://github.com/jiayuasu/GeoSparkTemplateProject/tree/master/geospark-analysis

What Is Spatial Co-Location

- Two or more species are often located in a neighborhood relationship. Africa lions co-locates with zebras
- · Ripley's K function is often used in judging co-location
 - Executes multiple times
 - · Compute adjacent matrix (distance join)
 - · Form a curve for observation

Ripley's K Function Multivariate Spatial Patterns

- 1. Set a base distance (say, I meter)
- 2. Perform a distance join to get adjacent matrix
- 3. Plug the matrix into Ripley's K and compute the K value
- 4. Repeat Step 2 and 3 until converge
 - · Each time increase the distance

- Create TripRDD (PointRDD)
 - Spatial partition
 - Build index

```
tripRDD.spatialPartitioning(GridType.KDBTREE)
tripRDD.buildIndex(IndexType.QUADTREE, true)
tripRDD.indexedRDD = tripRDD.indexedRDD.cache()
```

- Cache indexed TripRDD into Spark memory
- · Create LandmarkRDD (PointRDD)
 - · Do not do spatial partitioning for now

Start iterations

var bufferedArealmRDD = new CircleRDD (arealmRDD, currentDistance
bufferedArealmRDD.spatialPartitioning(tripRDD.getPartitioner)

- Create a CircleRDD = LandmarkRDD + distance buffer
- Spatial partition CircleRDD in the way with TripRDD
- · Perform distance join
- · Compute Ripley's K

```
var adjacentMatrix = JoinQuery.DistanceJoinQueryFlat(tripRDD,
bufferedArealmRDD, true, true)
```

- Mining result
 - · Observed K value is always higher than expected K value
 - Conclusion: people call taxis at landmarks such as airport, hospital, library...

DAG and data shuffle

- Visual analytics
 - TripRDD
 - LandmarkRDD
 - · Map algebra: local operation

Outline

Big geospatial data

Manage spatial data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

Streaming Data in Spark

- · Streaming data is divided into batches
- · Each batch is an mini RDD
- Batch to batch

Queries on Streaming Data

- Contiguous query
 - Word count over time
- Window query

Time

Word	Count
Cat	1
Dog	2

Word	Count
Cat	2
Dog	4
Lion	

Word	Count
Cat	3
Dog	5
Lion	2
Zebra	

- Word count over the time window
- · Stream static join
- · Stream stream join

Word	Count		Word	Count	
Cat	3		Cat		
Lion	2		Dog	2	
Zebra	I				

Word	Count	
Cat	2	
Dog	4	
Lion		

Challenges: Spatial Streaming Data

- Current spatial partitioning
- NYC California Arizona RDD-wise, repartition every time
 - · Spatial distribution may change over time
- Potential directions
 - Don't use spatial partitioning
 - Global index only for navigating query

Challenges: Spatial Streaming Dates

· Current spatial indexing

- RDD California Index Index NYC
- · Local index RDD-wise, re-build every time
- · Updatable spatial index, insertion / deletion extremely slow
- Potential directions
 - · A separate lightweight global index

PostgreSQL result

Index	Data size	Data size Index size Initial. time		Insertion (0.1%)
R-Tree	200 GB NYC	84 GB	28 hours	6 hours

Challenges: Spatial Streaming Data

- · Current distributed spatial join
 - · Both sides need to be spatial partitioned
 - · Cannot work well without spatial partition or indexing
- Potential directions
 - · Distributed spatial streaming join
 - · Stream static
 - Stream stream

Manage spatial data

Spatial partitioning Query optimization

Spatial indexing

Object serializer

Spatial queries

Spark integration

Manage Spatio-Temporal Data

Spatial-temporal partitioning

Trajectory management

Spatial Data Analytics in Spark

Distributed map visualization Distributed map algebra

Spatial co-location pattern mining

Spatial Streaming Data in Spark

Spark streaming in general

Challenges for spatial streaming data

Google "GeoSpark ASU"

http://datasystemslab.github.io/GeoSpark/

All-in-one system

· Spatial RDD, Spatial SQL, Spatial DataFrame

- · Distributed map visualization is included
- Welcome to use GeoSpark as a benchmark! 8K 10K monthly downloads

"GeoSpark comes close to a complete spatial analytics system. It also exhibits the best performance in most cases."

"How Good Are Modern Spatial Analytics Systems?" Varun Pandey, Andreas Kipf, Thomas Neumann, Alfons Kemper, PVLDB 2018

Tutorial website

SQL

true Use local map