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Geospatial Data

* loT sensors in Smart City: 7 billion in 2019

-

'.mm ‘ OFO
AYWHERE

.5 billion taxi trips

Taxi & Limousine Commission
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Geospatial Data

* Climate monitoring: 22 PB satellite imagery data

aster array format: Geo I'iff and HDF format

e USGS

P

’\

Land, Ocean, Atmosphere
data from spacecraft

science for a changing world

86 °C
No Data 3,000 km

DIS Land Surface Temperature
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Geospatial Data Frameworks "

* Classic - single machine DBMS or GIS tools
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Geospatial Data Frameworks "

* Single machine solutions suffer from the scalability issue

* In Database community, something is happening..

* Parallel execution . .
V p——

* In-memory computation i ' i i
Main ~@,
memory i ¥ Multiple cores
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New DBMS Approaches "™

* Parallel execution

* GPU acceleration

KIN=LICQ

omn! TWEET MAP (Q_ Search hashtags and tweets... memo.nmsa‘

392,945,465

Oct 2, 2018

¢ g e | : : 3 y
500,000 -TAV

M English B Portuguese M Spanish B Undetermined Japanese Turkish M Arabic I Tagalog M Indonesian W French
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Cluster (Distributed)
Computing Approaches

sk’

APACHE

STORM'
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Manage Spatial Data in Spark?™

APACHE

Spark

| want to manage spatial data in Spark! Not that easy'

* No spatial data type support
* No spatial index

* No spatial query
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Manage Spatial Data

Spatial data partitioning

Spatial indexing

APACHE

SprK Spatial queries

Optimization

Language, spatial object support




* Intermediate data in-memory

Arizona State
University

Spark in a Nutshell

 Resilient Distributed Dataset
SPaGrK

™

* Directed Acyclic Graph (DAG) scheduler
» Spark SQL / DataFrame Map

Map
Start

Collect

» Spark Structured Streaming

* Spark GraphX / GraphFrame

Collect

Reduce
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Spark in a Nutshell

 Action / Transformation

« Action: Count, Take

* Transformation: yield new RDD, such as map, filter, reduce, join, GroupBy

* Narrow dependency: Map, filte
: Z o I dependency JIESESEEE VVide dependency

* Parent RDD pari{Single stage

* No data shuffle,
* Wide dependency: |
* Parent RDD par

fition
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Spatial in Spark: Design Goal ™™

Reduce wide dependencies

Speed up local computation

Reduce the Memory Footprint
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Manage Spatial Data

Spatial data partitioning

APACHE

Spark
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Load Data Into Spark RDD ™

* Loading data into Spark RDD or DataFrame
* Partition data into 64 MB chunks using Hash partitioner

* If the data is already partitioned, keep the original partitions

» Hash
Q’ partitioner Cluster

https://spark.apache.org/docs/2.3.1/api/java/org/apache/spark/HashPartitionerhtml

Data
source




FSU

Arizona State

* Repartition data in RDD

* Partition by spatial proximity

* Still achieve load balance

e API: CustomPartitioner

Spatial data partitioner

&
&

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective
and beyond." Geolnformatica (2018): [-42.
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Spatial Data Partitioning ™™

* Spatial partitioning algorithm
* Randomly sample the RDD
* Build a KD-Tree/Quad-Tree/R-Tree on the sample
* Take the leaf nodes of the tree as the global partition file

* Re-partition the RDD according to the partition file

i-----------------'
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Spatial Data Partitioning ™™

* Common spatial partitioning grids
* Space partition: Uniform, KD-Tree, Quad-Tree

* Data partition: R-Tree, an overflow partition due to sampling

Uniform grids Quad- Tree -Tree

Xie, Dong, Feifer Li, Bin Yao, Gefel Li, Liang Zhou, and Miny1 Guo. "Simba: Efficient in-memory spatial analytics.”
In Proceedings of the 2016 International Conference on Management of Data, pp. 10/ 1-1085. ACM, 201 6.
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Spatial Data Partitioning ™™

* Other common spatial partitioning grids

* Voronoi diagram, Z-curve, Hilbert-curve

Magellan: https://github.com/harshaZ0 | O/magellan

Whitman, Randall T., Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. "Spatio- lemporal Join on Apache Spark.”
i iCoFATIAL 01 /.


https://github.com/harsha2010/magellan

Arizona State

Spatial Data Partitioning ™™

* Objects that intersect many boundaries
* Duplicate them to all intersected partitions

* Need duplicate removal after queries




DAG and data shuffle:

* Each spatial partitioning is a wide dependency

* Wide dependency will incur a data shuffle

[ ast stage

XA

S

/

< | DN

RDD

NYC

California Arizona

Next stage

FSU

Arizona State

Spatial Data Partitioning ™™

Wide dependency
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Spatial Data Partitioning ™™

* Performance

. e 30 -
* Measured using spatial join query —

Quad-Tree Partitioning
Il -R-TreePartittonthg————

N
Ul

* Join with |71 thousand polygons
- NYCtaxi: |.3 billion points
» OSMobiject: 263 million polygons

Execution time (Min)

- TIGERedges: 72.7 million line strings

* Cluster settings: Four workers, one master,
192 cores, 400 GB Memory

O Al
NYCtaxi OSMobject TIGERedges



Manage Spatial Data

Spatial indexing

APACHE

Spark
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Spatial Indexing

* [raditional indexing

* Not work because of the huge storage overhead

* Data in different partitions

* Distributed spatial indexing Global index

* Global index

: —_—
* |Local index | ocal Index

| ocal Index

| ocal iIndex
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Spatial Indexing

* Global index

* Remember the tree built for spatial partitioning?
* Iwo birds, one stone!

* Use it to index partition bounding boxes

* Lightweight, on the master machine .S,

-----------

* No entries for individual records
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Spatial Indexing

* Local indexing

* On each RDD partition
* R-Tree, Quad-Tree,...
» Has entries for individual records

* Queries that use spatial index requires a refinement phase based
on the real shapes of objects
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Spatial Indexing

* Partition range index (Spatial Hippo, spatial bloom filter)

* Global index only indexes bounding boxes not internal content

* Queries sometimes still go to false positive partitions

0o/ 8

D . z,|:|

---------- ] . NO Over‘aps!

Tang, Mingjie, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and Walid G. Aref. "Locationspark: A distributed
INn-memory data management system for big spatial data." PVLDB 2016

13, and Mo
Lessons from -
Cleian A9 TA

named Sarwat. "Indexing the Pickup and Drop-Off Locations of NYC Taxi Trips in PostgreSQL—

the Road." In International Symposium on Spatial and lemporal Databases, pp. |45-162. Springer;
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Spatial Indexing

* Partition range index (Spatial Hippo, spatial bloom filter)

* Reduce false positive partitions

Global index
PartitionRangelndex
-

Histograms on X and Y PartitionlD Bucket(l,1) Bucket(l,2) Bucket(l,3)

| ocal Index | ocal Index
| ocal Index
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Spatial Indexing

 DAG and data shuffle: | RDD transformations

* Global indexing: done with the spatial data partitioning (including
partition range index)

* Local indexing: Map per Partition, Narrow dependency

Narrow dependency

Single stag

NeRSaltiiils
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Spatial Indexing

 Performance on different local indexes -

B Nolndex

* Measured using spatial range query il

> 5 umm Guadfree-Search—

* Range area from |% to 16%

» OSMobiject: 263 million polygons

Execution time (Min)

» Cluster settings: Four workers, one
master, |92 cores, 400 GB Memory

1% 4% 16%



Manage Spatial Data

APACHE

Sp Qr K Spatial queries




Arizona State

s pat i al Qu e ri e s University

* Spatial queries should utilize spatial partitioning and spatial indexing
* Cache the indexed spatial partitioned RDD

* [he cached RDD cannot be updated. It is expected to be used

many times

Index Index Index
RD D California
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Spatial Queries

* Spatial range query: a straightforward way

Send the query window to all partitions

M

Local indext ' I B | ocal index
| ocal iIndex
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Spatial Range Query

Prune partitions based on the global index, on master machine

Prune partitions using partition range index, on master machine

Go to partitions and check local indexes
API: rdd.PartitionPruningRDD

ang, Mingjie, Yongyang Yu, Qutaibah M. Mal

n-memory data management system for b

-G\oba\ index

Partition range index

| ocal Ingex | ocal Index

| ocal Index

uhi, Mourad Ouzzani, and Walid G. Aret. "Locationspark: A distributea

ig spatial data." PVLDB 2016
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Spatial Range Query

 DAG and data shuffle: | RDD transformations

* Checking global indexing -> on master machine

* Checking local indexing -> a MapPartition operation, no shuffle

Single stage

Index Index Index
RDD

Narrow dependency

NeRSaltiiils
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Load Spatial Data in Batches "™

* You are generally tight on memory budget
* Spark needs a great deal of memoryx
* Use a sliding window to load spatial data in batches

* Sliding window: size = hum of partitions, decide it based on mem

R e
- B

Balg, Furgan, Hoang Vo, Tahsin Kurg, Joel Saltz, and Fusheng Wang. "Sparkgis: Resource
aware efficient in-memory spatial query processing.” SIGSPATIAL 201/
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Load Spatial Data in Batches "™

* Use a sliding window to load spatial data in batches

* Load a partition only if its bounding box overlaps query predicate

s
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Spatial Join Query

* A set of objects (gas station), a set of polygons (state boundaries)

* Find gas stations in each state

=

Jiﬁ L=

State boundary
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Spatial Join Query

* Distance join query, similar to spatial join

* Find gas stations within I mile distance of each grocery

* Add distance buffer to each grocery = spatial join query

AW -
i "a ¥ )

n
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Spatial Join Query

* Algorithm
» ZipPartition
* Local index-nested loop join

* Local de-duplication using the reference point

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective
and beyond.” Geolnformatica (2018): |-42.

Dittrich, ]-P, and Bernhard Seeger. "Data redundancy and duplicate detection in spatial join processing.” In ICDE,
2000.
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Spatial Join Query
Algorithm

University

» ZipPartition
* Both RDDs should be partition by the same way

* One can have local index

State boundary

State
[ [ | mp e
[gle

ex
Index Index Index Gas
RD D California

State State
Arizona C
Gas Gas

(Gas station
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Spatial Join Query
Algorithm

* Local index-nested loop join

State State ForEach (state) in local states
1101 [California NYC Search local index on gas station
Index
Gas Gas

* Local de-duplication using the reference point

University

State

Arizona

Gas

» Spatial partitioning introduces duplicates

* Need to remove them without incurring data shuffle!
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Spatial Join Query

University

Algorithm

* Reference point ey

F_____ LI

| Polygon Pb from SRDD B-| Report Pa intersects Pb in Partition 2 (Grid 2)

————————————

* Query results with duplicates '
+ (Pa,Pb) (Pa,Pb) (Pa,Pb) (Pa,Pb) | 7 i

Polygon Pa from SRDD A |

* Compute the intersection of Pa and Pblérid:
* Take Reference Point(maxX, maxY) of intersection

* Report (Pa, Pb) in a partition only if reference point is within the
boundary of this partition
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Spatial Join Query

 DAG and data shuffle: 3 RDD transformations

Stage Index Index Index
RD D California Arizona NYC RD D

State State
RD D California Arizona
Index Gas

Network

State communication
NYC
Gas

Narrow dependency

Narrow dependency

I

Narrow dependency
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Spatial K-Nearest Neighbor

* Selection + Sorting phase

| ocal R-Tree

-
| ocal R-Tree

000 060 000 Nl lailele:INlolol

X xr
oia

| ocal R-Tree

Redo Search In This Area

© Q N = lake global Top K

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "Spatial data management in apache spark: the GeoSpark perspective
and beyond." Geolnformatica (2013): |-42.



* Local Top K selection: Map operation, Narrow dependency

FSU
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Spatial K-Nearest Neighbor "

DAG and data shuffle: 2 RDD transformations

* Global sorting:Wide dependency

Stage

Index Index Index
RDD

Stage

Y2 N
RDDM W M

Narrow dependency

Wide dependency
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Spatial K-Nearest Neighbor

* Why not use global index to prune partitions?
* Query accuracy is not guaranteed
* KNN might be in other partitions

* The correct spatial partitioning for KNN should have a K-element
buffer and repartition RDD for every KNN ﬁery

oo expensive

Index Index Index
RDD

Some results might be In Arizona partition!
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Spatial KNN Join

* Find the nearest 3 gas stations for each grocery

A a /n

Ziﬁ liﬁ =

A—
[==g=" ]

A

wagan
A
==p==|

A—
[==g=e]
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Spatial KNN Join

Spatial partitioning: a distance buffer for each partition such that
each query point can find its KNN in one RDD partition.

Local KNN [
i ( [==g=]

( BazZim
Fiolra,

Partition

s A Al their KNN are here

ioudis, Georgios, Constantinos Costa, Demetrios Zeinalipour-Yazti, VWang-Chien Lee, and Evaggelia

Distributed In-memory processing of all k nearest neighbor queries." IEEE TKDE 2016

Xie, Dong, Feifel Li, Bin Yao, Gefel Li, Liang Zhou, and Miny1 Guo. "Simba: Efficient in-memory spatial analytics.”
In SIGMOD, 201 6.



Spatial KNN Join

 DAG and data shuffle: 2 RDD transformations

Narrow dependency

Narrow dependency

Stage Index Index Index
RD D California Arizona NYC RD D

State State State
RD D California Arizona NYC
Index Gas G

NS ela
communication

FSU

Arizona State

University



Manage Spatial Data

APACHE

Spark

Optimization




* Query optimization

Optimization

* Distributed spatial join VS broad-cast spatial join

Arizona State
University

* One side of spatial join is smaller, send it to all RDD partitions

(Gas station

N
e

State
» RD D California
Index G
as

State

Arizona

Gas

State
NYC
Gas




Optimization oLl

Custom Serializer

 What is a serializer?

* When is a serializer used?

» Object -> byte array -> Object

&
P

>

* Cache RDD into memory

» Shuffle objects across the cluster
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Optimization
Custom Serializer

* Why do we need a custom serializer for spatial objects!?

University

» Spatial objects are very complex, tons of coordinates
» Spark default Java and Kryo serializer are not efficient
» Size according to GeoSpark experiment

» 3 times smaller than Spark default size

» 20 times faster serialization

* 5 times faster deserialization

https://github.com/DataSystemsl ab/GeoSpark/tree/master/core/src/main/java/org/datasyslab/geospark/
seometryObjects



https://github.com/DataSystemsLab/GeoSpark/tree/master/core/src/main/java/org/datasyslab/geospark/geometryObjects
https://github.com/DataSystemsLab/GeoSpark/tree/master/core/src/main/java/org/datasyslab/geospark/geometryObjects

Arizona State
University

Optimization
Custom Serializer

* How to write a spatial object serializer!?

* Define a rule to serialize heterogeneous spatial types into a byte
array. For example, borrow the definition of Shapefile or VKB

* How to write a spatial index serializer?
* Use a regular tree traversal algorithm to traverse the tree

* Note the child node size because an index is not a full tree
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Optimization
Custom Serializer

* How to add a serializer to Spark!?
* Write a register via Kryo

* Register it when creating Spark session

Vol spalkSession = SparkSession.bullder ()

.appName ("myAppName")

// Enable GeoSpark custom Kryo serializer

i on 1" cpark.seriallizer”, classOf [KryoSerializer] .getName)

L fig Spark kryo .registrator”, classOf [GeoSparkKryoRegistrator] .gelName |
.getOrCreate ()

https://github.com/DataSystemsl ab/GeosSpark/blob/master/core/src/main/java/org/datasyslab/
geospark/serde/GeoSparkKryoRegistratorjava



https://github.com/DataSystemsLab/GeoSpark/blob/master/core/src/main/java/org/datasyslab/geospark/serde/GeoSparkKryoRegistrator.java
https://github.com/DataSystemsLab/GeoSpark/blob/master/core/src/main/java/org/datasyslab/geospark/serde/GeoSparkKryoRegistrator.java

Arizona State

Manage Spatial Data

APACHE

Spark

Language, spatial object support
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Language

* Implement the system in what language!

* Scala
» Spark is written in Scala /
* Functional programming by nature
* Java
* No learning curve, Scala/Java functions can call each other
e
» Cannot modify Spark kernel =
» Cannot add UserDefined Type and query optimization Java

* Python
 Python code connect to Spark via Py4;
* Needs Python spatial object handler
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Spark Interface

» Spark interface

» RDD: easy to customize, hard to use

» DataFrame: easy to use , hard to customize
» Spatial SQL
* User Defined Type
* Indexing and spatial partitioning

» Optimized join strategy
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Integrate With Dataframe

Spark Catalyst query optimizer

Spatial SQL System
Expressions Catalog
SQL

Unresolved
DataFrames Logical Plan

Spatial SQL
Heuristic Rules

Logical

Analysis Optimization

Logical Plan

Optimized
Logical Plan

Physical ( Physical Cost Selected . Code DataF
Planning Plans Models Physical Plan Generation ataffame
Cost-based Spatial Spatial
Join Strategies Statistics

Make Catalyst understand the geospatiall




Integrate With Dataframe .

Spatial SQL

» Spatial SQL: SQL-MM3, Simple Feature Access
» SQL-MM3: PostGlS, GeoSpark, GeoMesa...
» ST Contains, ST Within

SELECT superhero.name

» Simple Feature Access FRoM city, superhero
WHERE ST Contains(city.geom, superhero.geom)

» Contains, Within AND city.name = 'Gotham';

» Compatible with each other in most cases

* Implement these functions in Spark expression (not UDF)
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Integrate With Dataframe sewse.

University

Spatial SQL

 Spark expression, the way Spark writes its own functions

» Unary, binary, ternary

» Each AST (Abstract Syntax Tree) node is a Spark expression

* Allow the following features

 Code

generation

» Output data type

* Fuse into the Catalyst optimizer

https://github.com/

DatasSystemsl ab/GeoSpar

/tree/master/sgl/src/main/scala/org/apache/spark/

sgl/geospar

<sal/expressions



https://github.com/DataSystemsLab/GeoSpark/tree/master/sql/src/main/scala/org/apache/spark/sql/geosparksql/expressions
https://github.com/DataSystemsLab/GeoSpark/tree/master/sql/src/main/scala/org/apache/spark/sql/geosparksql/expressions

Integrate With Dataframe .

User Defined T
Each spatial object and index must be a UD

in Dataframe
Spark provides a developer API
The spatial object UDT must be based on a primitive type Array

Must provide the serialization method ]

UDT code snippet from GeoSpark




Integrate With Dataframe .

University

Indexing and Spatial Partitioning

* Indexing

* Each local index is a big UDT. Each partition has one UDT (row).
* No way to plug the global index to Catalyst physical plan

* Spatial partitioning

* Cannot be done via regular DataFrame AP]

* Use DataFrame’s RDD API to do spatial partitioning



Integrate With Dataframe
Optimized Spatial Join Strategy

* Inject spatial join query

* Overwrite Spark strategy (physical plan)

* Use pattern-matching to

oIn pattern-matching snippet

from GeoSpark

capture spatial join pattern

def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {

// ST_Contains(a, b) - a contains b
case Join(left, right, Inner, Some(ST_Contains(Seq(leftShape, rightShape)))) =>
planSpatialJoin(left, right, Seq(leftShape, rightShape), false)

// ST_Intersects(a, b) - a intersects b
case Join(left, right, Inner, Some(ST_Intersects(Seq(leftShape, rightShape)))) =>
planSpatialJoin(left, right, Seq(leftShape, rightShape), true)

// ST_WITHIN(a, b) - a is within b
case Join(left, right, Inner, Some(ST_Within(Seq(leftShape, rightShape)))) =>
planSpatialJoin(right, left, Seq(rightShape, leftShape), false)

// ST_Overlaps(a, b) - a overlaps b
case Join(left, right, Inner, Some(ST_Overlaps(Seq(leftShape, rightShape)))) =>
planSpatialJoin(right, left, Seq(rightShape, leftShape), false)

// ST _Touches(a, b) - a touches b
case Join(left, right, Inner, Some(ST_Touches(Seq(leftShape, rightShape)))) =>

planSpatialJoin(left, right, Seq(leftShape, rightShape), true)

// ST_Distance(a, b) <= radius consider boundary intersection

case Join(left, right, Inner, Some(LessThanOrEqual(ST_Distance(Seq(leftShape, rightShape)), radius))) =>

planDistanceJoin(left, right, Seq(leftShape, rightShape), radius, true)

Arizona State
University




Integrate With Dataframe %
Optimized Spatial Join Strategy

* Register the new join strategy using its

* sparkSession.experimental.extraStrategies = JoinQueryDetector

SELECT *
FROM polygondf, pointdf
WHERE ST Contains (polygondf.polygonshape,pointdf.pointshape)

Captured join query plan

== Physical Plan ==
RangeJoinpolygonshape#20: geometry, pointshape#43: geometry, false
:— Project [st polygonfromenvelope (XXX) AS polygonshape#20]

: * *FileScan csv
+- Project [st point (XXX) AS pointshape#43]

+- *FileScan csv

Original join query plan

== Physical Plan ==
polygonshape#20: geometry, pointshape#43: geometry, false

:— Project [st polygonfromenvelope (XXX), mypolygonid) AS polygonshape#20]

: 4+ *PFileScan csv
+- Project [st point (XXX) AS pointshape#43]

+- *FjileScan csv
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Manage Spatial-Temporal Datd™

What is spatial-temporal data!?
e Donald J. Trump &

| Twitter Location Timestamp Content

me "old," when | would NEVER call him Point(14.315424, 108.359537) | | [/ 1112017 [6rkof vl notic &8

"short and fat?" Oh well, | try so hard to be |

= his friend - and maybe someday that will
happen! _ s
4:48 PM - 11 No 5

s 5813718Lkes Ep @@ =2 L H PSP D

Wh t is a spatial-temporal query?

SELECT *
FROM tweets t

WHERE ST Contains(t.loc, US) AND timestamp BETWEEN 11/1/2017 AND 11/30/2017

Why do we need to care spatial-temporal data!?

Temporal filter is done in a table scan. Inefficient!

» Spatial data distribution / shape changes over time (Trajectories!)
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Spatial-Temporal Partitioning™™

* Partition by spatial and temporal proximity / achieve load balance

* Randomly sample the RDD and put it on the master
* Build the global index / partition boundaries on the sample

* Apply partitions....

* How to partition data by spatial and temporal attributes together?
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Spatial-Temporal Partitioning™™

* Jemporal partitioning

* Uniform granularity

* Load-balanced

Compute Temporal and Spatial partitions separately

Whitman, Randall 1., Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. "Spatio- lemporal Join on Apache Spark.”
o aTiAaL 0] /.
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Spatial-Temporal Partitioning™™

* Spatial partitioning

* Compute the spatial boundaries using KD-Tree, Quad-Tree,...

/} f an-
an , 4% b
e Fr g ar
Compute Temporal and ar May
Spatial partitions separately v ' i -
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Spatial-Temporal Partitioning™

* What if the spatial data distribution changes over time!

Feb

Mar

- g - F
. R SR A o7 £
A
£ /4 /

data." Geolnformatica 22, no. 4 (20

\_ | J
Spatial-temporal partitions

Alarabl, Loual, Mohamed F. Mokbe

>

r -
i
Jan o L
//j/i/
Feb //
L
////
Mar o
v

\_ J
Adaptive spatial partitions

,and Mashaal Musleh. "St-hadoop: A mapreduce framework for spatio-temporal

8): 785-813.
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Spatial-Temporal Partitioning™

* First, generate temporal partitions on the sample
* Then, create spatial partitions for each temporal partition

* Local spatial index is still built on each spatial-temporal partition

Global index

| ocal iIndex | ocal iIndex
| ocal iIndex
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Spatial-Temporal Queries "
* Spatial-temporal range query
* Global index: temporal filter, then spatial filter . :
* Prune partitions A
* Query remaining local indexes o //////
* Spatial-temporal join query Feb -
» Partition both datasets in the same way o
 Zip partitions by ID = ////

* Local join Adaptive spatial partitions

Global index
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Trajectories Management "™

* Irajectories are common but special
* Very long and cross half of the region
* Many overlapped segments
* Have directions

* Similarity (NN) queries, not range

Fisure from: https://anitagraser.com/2016/1 | /0//movement-data-in-gis- 3-visualizing-massive-trajectory-datasets/



https://anitagraser.com/2016/11/07/movement-data-in-gis-3-visualizing-massive-trajectory-datasets/

Arizona State

Trajectories Management "

* Most components mentioned before fail
* Spatial data partitioning doesn’t work
* Numerous duplicates because of long distance and overlaps
* Regular spatial index doesn’t work
* Only index MBR and trajectories’ MBR are large in general

* Distance / similarity metrics are different

f/ ) { They are close In terms of the nearest points

But not similar at all
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Trajectories Partitioning "™

» Partition based on segments of trajectories (Xie et al,VLDB |7)

* A trajectory is split and put into different RDD partitions

* Need to reconstruct some trajectories at the end

» Partition based on pivot points (Shang et al, SIGMOD |[8)

* Pivot points are

representative points on a trajectory

* A trajectory is put into the same partition / no reconstruction

* No longer based MBR of trajectories

i oo refiel Ll and Jeff M. Phi
Shang, Zeyuan, Guoliang Li, and Z

ips. "Distributed trajectory similarity search.” In VLDB 201/

nifeng Bao. "Dita; Distributed in-memory trajectory analytics.” In SIGMOD 201 8.
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Trajectories Indexing

* Global index

* Segmented based: MBR of segments, spatial partitioning

* Pivot points based: special index on pivot points

* | ocal index

* Segmented based: regular R-Tree index

* Pivot point based: special index on pivot points
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Similarity Search / Join "™

» Similarity search
* Given a query trajectory, find K similar trajectories
* Similarity join

* Given a set of trajectories, find K similar traj for each of them

s
> Similarity join
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Distance Metric

* Dynamic Time Warping (D TW)

* Longest common subsequence distance (LCSS)

* Frechet distance

Perform segment-wise comparison
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Outline

Manage Spatio-Temporal Data
<"(‘Z
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Spatial Visual Analytics ™

* Spatial visualization is important

* Existing tools can exhibit excellent visual effects but cannot scale

@ Zeppelin oo —

Map > 3% & @ & @ © Head ~ v] 0] ) £ @ default~

¥hana FINISHED
A select country_name, lat, lng, event_type from event_view where actor_type_id='2" and country_name ='South Sudan' limit 10

H w ¢ w v Q0 @ & +~ settings~

: 3
- N‘'Djamena skl P A L
Liaxil
X L1 . ) ¢ ) Djibouti

e 'A; NS W Gaa>
Q.
' ‘ s £4A%F / Dire
aNNOtT SCale
([ ) ; AYTRY
Kodorose pPSe South an -
ti Béafrika . 0
1 —/ RP‘)“bl‘Q“() . Nat SOO’”dd“yd
Cameroun Centrafricaine Jlegual
Bangui
Yaou @
0 P Hout-Ue

Muaqdisho
Gass) AR

Bunia @

+ ® 33 Ecuatoria
.tl_ -|:|- G e G U Leaflet | © OpenStreetMap contributors
F T w A R £ " S i3St updated Dy ar Y1 J it November 30 201 54 M
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Spatial Visual Analytics "™

» Scalable visualization: visualize BILLION objects on Gigapixel map

» Customizable visualization: manipulate pixels at scale

Fair Lawn

- Larchmont
oln Park
Vernon Ng
Harbor
Lattingt

| | Huntington
Parsippany-Troy Hills

Passaic efield Park & Laurel Hollow
Wooc

Ridgefield

2 v C 2 Rutherford
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Bloomfield

West Orange

Florham Park

w
W

estbury
Salsbury

Irvington New H
Floral Pz

st Babylon

1a Park

Wact

Wes Cranford
otch Plains

Linden

© Mapbox © OpenStreetMap Improve this map



Spatial Visual Analytics

* Rasterize vector shapes to pixels (with weights)

* Or, load from GeoTIFF/NetCDF/HDF array-

-format spatial

observations =

\
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N
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]
/

\

\

/

\

\

/

\
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* Aggregate pixels (with weights)

Render color

Geotrellis: https://geotrellis.io/

Arizona State
University

Yu, Jia, Zongsi Zhang, and Mohamed Sarwat. "GeoSparkViz: a scalable geospatial data visualization framework In

the apache spark ecosystem.” In $5DBM, 2018.


https://geotrellis.io/
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Pixel Array Data Partitioning "

* Each partition is a map tile

» Each map tile is X*X pixel array




Arizona State

RDD and Zoom Levels University

» Zoom levels: each level consists of a set of map tiles

 Each RDD is a zoom level.

Zoom Level 1

Level H Tiles
0 I
I 4
Zoom Level 2
2 |16
3 64

Tiles per level

Zoom levels




Arizona State

Map Visualization Pipeline "

Visualization pipeline and DAG stages

Pixel

Spatial join query Rasterize agaregate Colorize Render
NYC Taxi Trips L e
PICkl.lp POINT(...) Repartition
Location |
Drop-off
L pt. O ) Repart|t|on LOC3' Remove ey
e =) {See) [T ) FH [
Fare $17.05 7 . £
s fon) ! | Dupher FEHMEMO
T Repar’uhon join I Duphcatesr R

I

(airports, schools,...)

Repartition|

Landmark | [sGuardia
name Airport l

Address Stage |  Stage 2 Stage 3 Stage 4
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Manipulate Raster Array Data™™

* Map algebra operations

|
|
T

.
~od

Zonal operations

Local operations ~ocal operations

Local and focal gif from Geotrellis: https://docs.geotrellis.io/en/latest/guide/core-concepts.ntml#map-algebra



https://docs.geotrellis.io/en/latest/guide/core-concepts.html#map-algebra
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A Map Algebra Example ™

Local operation on temperature observations from NASA MODIS

F. e Migh 260

B ow:-214

April 2015 April 2014 Climate change

Fisures and examples from https://gisseography.com/map-algebra-global-zonal-focal-local/



https://gisgeography.com/map-algebra-global-zonal-focal-local/
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Lo cal o p e rat i o n University

Algorithm: two pixel RDDs A and B, partitioned in the same way
ZipPartitions: Zip A and B

* MapPartition: Local pixel manipulation

Stage
oo 1 ) - O
Narrow dependency

RDD

Tilel Tile2 Tile3

Narrow dependency
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Focal Operation

* Algorithm: each pixel aggregates with its neighbors

* Spatial partition buffered Pixels

* Make sure each pixel can find its neighbors

* MapPartition: Local aggregation in each partition

Stage

I

Narrow
dependency

Pixel with | pixel buffer
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Zonal Operation

* Algorithm |:]oin vector polygons with raster pixels

* Rasterize each polygon to a mask layer

* Broadcast it to each pixelRDD partition

* Find matched pixels on each partition

Scidb, https://www.paradigm4.com/



https://www.paradigm4.com/

Arizona State
,. University

Zonal Operation
Algorithm 2: Scalable

* Convert each pixel back to a spatial point

Then use spatial join between polygons and points -

Stage Index Index Index
RD D California Arizona RD D
N al'TOW dependenc State State State
California Arizona
[ale[S% G Gas

RDD
!
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Spatial Data Mining Example "

* Spatial co-location pattern mining in Spark

* Use spatial join to build a whole data mining application

* Use map algebra to visualize the result
* Taxi pick ups (| billion)
* NYC landmarks (300, airports, hospitals..)

nttps://github.com/jiayuasu/Geospark lemplateProject/
tree/master/geospark-analysis



https://github.com/jiayuasu/GeoSparkTemplateProject/tree/master/geospark-analysis
https://github.com/jiayuasu/GeoSparkTemplateProject/tree/master/geospark-analysis
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What Is Spatial Co-Location "™

* Two or more species are often located in a neighborhood
relationship. Africa lions co-locates with zebras

* Ripley’s K function is often used in judging co-location
* Executes multiple times

* Compute adjacent matrix (distance join)

 Form a curve for observation
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Ripley's K Function
Multivariate Spatial Patterns

|. Set a base distance (say, | meter)

Perform a distance join to get adjacent matrix

Plug the matrix into Ripley’s K and compute the K value

= o

Repeat Step 2 and 3 until converge

 Each time increase the distance

Philip M. Dixon, Encyclopedia of Environmetrics https://www 3.nd.edu/~mhaenggi/ee8/021/
Dixon-K-Function.pdf
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Write Co-Location Mining in Spark

* Create TripRDD (PointRDD)

. Spatlal partition tripRDD.spatialPartitioning (GridType .KDBTREE)
tripRDD.buildIndex (IndexType .QUADTREE, true)
o o tripRDD. indexedRDD = tripRDD.indexedRDD.cache ()
* Build index

Cache indexed TripRDD into Spark memor
* Create LandmarkRDD (PointRDD)

* Do not do spatial partitioning for now
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Write Co-Location Mining in Spark

< S 0 o var bufferedArealmRDD = new CircleRDD (arealmRDD, currentDistance
ta rt Ite ratl ons bufferedArealmRDD.spatialPartitioning (tripRDD.getPartitioner)

* Create a CircleRDD = LandmarkRDD + distance buffer
* Spatial partition CircleRDD in the way with TripRDD

* Perform distance join

* Compute Ripley’s K

var adjacentMatrix = JoinQuery.DistanceJoinQueryFlat (tripRDD,
bufferedArealmRDD, true, true)
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Write Co-Location Mining in Spark

* Mining result

* Observed K value is always higher than expected K value

* Conclusion: people call taxis at landmarks such as airport,
hospital, library...

Ripley's L function using 10 iterations

Expected

0
2204 4408 661.1 8815 1101.9 1322.3 1542.7 1763.1 1983.4 2203.8

DISTANCE (UNIT: METER)




 DAG and data shuffle

1 [Partition

L and
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Wide

Spatial partition
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Write Co-Location Mining in Spark
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Stage 30)
Cached
Narro\/a ZipPartition Local join De-dup Ripley's K

-

&

~

Spatial partition

Stage 2

terations for Ripley’'s K
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* Visual analyt
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Outline

Big geospatial data
Manage spatial data

Manage Spatio-Temporal Data

Spatial Data Analytics in Spark

Spatial Streaming Data in Spark

K

™

Spa




Arizona State
University

Streaming Data in Spark

» Streaming data is divided into batches

* Each batch is an mini RDD

DAG

* Batch to batch * RDD . — RDD

Bro&

Batch 2 * ROD ™ e — [\BIBJp: sition
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Queries on Streaming Data "

z

Contiguous query
2

e

* Word count over time

Window query

* Word count over the time window

Stream - static join - B =
Lion i Dog 2 Dog i

Stream - stream join Time
Time
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Challenges: Spatial Streaming D4ata

* Current spatial partitioning
* RDD-wise, repartition every time
-

~

* Spatial distribution may change over time o

* Potential directions

* Don’t use spatial partitioning 2

* Global index only for navigating query 7




Challenges: Spatial Streamin

Current spatial indexing

* Updatable spatial index, insertion / deletion extremely slow

Potential directions

* A separate lightweight global index

FSU

Arizona State

3 DAt
Index Index Index
o0 2

* Local index RDD-wise, re-build every time

PostereSQL result

Index

Data size

Index size

Initial. time

Insertion (0.1%)

R-Tree

200 GB NYC

34 GB

28 hours

6 hours
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Challenges: Spatial Streaming D4ata

* Current distributed spatial join
» Both sides need to be spatial partitioned
» Cannot work well without spatial partition or indexing
* Potential directions
» Distributed spatial streaming join
* Stream - static

¢ Stream - stream
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Manage spatial data { Object serializer

Manage Spatio- l[emporal Data

{ Trajectory management
Spatial Data Analytics in Spark {

Challenges for spatial streaming data

Spatial Streaming Data in Spark {




Ged Spark ASU

Google “GeoSpark ASU” rabrionie g

http:// datasysteﬁws\ab.github.io/ GeoSpark/

* All-in-one system .
4 In production! @YANA

* Spatial RDD, Spatial SQL, Spatial DataFrame .

* Welcome to use GeoSpark as a benchmark! (SiSaelghZeelValexles

* Distributed map visualization is included

"GeoSpark comes close to a complete spatial it e -
analytics system. It also exhibits the best /\——\/
performance in most cases.” e

"HOW GOOCI Are Moder'n Spatial Analytics Systems?" Varun Pandey, Andl‘eas e;lls S
Kipf, Thomas Neumann, Alfons Kemper, PVLDB 2018 rme [Last Hont o] [Bponcov

Downloads From Last Month
Fororgdatasyslab ~~ geospark



Tutorial website

https://jiayuasu.github.io/geospatial-tutorial/
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