
Indexing the Pickup and Drop-off Locations 
of NYC Taxi Trips in PostgreSQL 

– Lessons from the Road
Jia Yu and Mohamed Sarwat

Arizona State University



A Little Story…

• August 1, 2015: Over 1 billion taxi trip records from 2009 to 2015 were released 
by New York City Taxi & Limousine Commission
• Since then: New taxi trip records keep being published on the Internet
• As of TODAY: Millions of new records have been added into the dataset

PickupTime DropoffTime TripDistance PickupLocation DropoffLocation PaymentType FareAmount TipAmount

2009-01-01
08:01:01

2009-01-01
08:20:37 2.2 (40.7577,-

73.9851)
(40.7497,-
73.9882) Credit Card 15.5 3.5

Photo credit: NYC TLC website



A Little Story… (cont.)

• People really want to do Spatial Query on this 175 GB data in PostGIS

• People really need a Spatial Index to speed up the queries.

Which Spatial Index can handle these?
1 billion records, 175 GB, millions new records, keep being published



Compared Approaches: GiST

• Generalized Search Tree (GiST-Spatial, Similar to R-Tree)

• Index structure: 

• Index entry (tree node): Minimum Bounding Rectangle, Tuple pointers

• Index search: Top-down, fast prune by checking Query Window with MBR

• Index maintenance: Search tree, then split (if full) and merge (if too empty)

Tuple

Non-leaf Non-leaf

Root
Tree index

Tuple Tuple Tuple Tuple Tuple

…

… …



Compared Approaches: GiST

• Summary of GiST
• Fast index search
• Large storage overhead: 20% or more additional overhead
• Slow maintenance: Split, merge tree nodes

Index Name Data size Index size Initial. time Insertion (0.1%)
GiST 175 GB NYC 84 GB 28 hours 6 hours



Compared Approaches: BRIN-Spatial

• Block Range Index (BRIN-Spatial):
• PostgreSQL 9.5, PostGIS 2.3 

• Index heap file pages

• Index search:
• 1. Serial search by checking Query Window

with MBR

• 2. Filter false positive pages

• Index maintenance: 
• Update MBR for Insertion

• No update for deletion

Disk 

pages

Heap file

Disk 

pages

Data table

Filter false positive pages

SELECT *
FROM NYCtaxi N
WHERE ST_WITHIN 
(QueryWindow, N.pickuppoint)



Compared Approaches: BRIN-Spatial

• Summary of BRIN-Spatial
• Index heap file pages
• Very small
• Fast maintenance
• Not good at queries Disk 

pages

Heap file

Data table



Compared Approaches: Hippo-Spatial

• Hippo-Spatial: PVLDB 2016
• Index heap file pages
• Index entry: dynamic page range, partial histogram
• Index search: 

• 1. Serial search by finding overlapped buckets between
Query Window and partial histogram
• 2. Filter false positive pages

X 1 2 3 4
Y

3

4

2

1

Histograms on X and Y Page Range Histogram Bucket ID (X,Y)

Start End

1 10 1 0 … 1 0

1,1 1,2 … 4,3 4,4

26 30 0 1 … 0 1

11 25 0 1 … 0 0

Page 1 - 10

Page False positive

1 √

2 √

3 Got results!

4 Got results!

5 √

6 Got results!

7 √

8 Got results!

9 Got results!

10 √



Compared Approaches: Hippo-Spatial

• Hippo-Spatial:
• Index maintenance

• Data insertion: eager update on partial histogram
• Data deletion: lazy update on partial histogram

X 1 2 3 4
Y

3

4

2

1

Histograms on X and Y

Page 26

26 30 0 1 … 0 1

Page Range Histogram Bucket ID (X,Y)

Traverse
Page Range Histogram Bucket ID (X,Y)

Start End

1 10 1 0 … 1 0

1,1 1,2 … 4,3 4,4

26 30 0 1 … 0 1

11 25 0 1 … 0 0

Out of date? YES.
Each entry

Resummarize



Compared Approaches: Hippo-Spatial

• Summary of Hippo-Spatial
• Index heap file pages
• Still small
• Fast maintenance
• Good at common queries X 1 2 3 4

Y

3

4

2

1

Page Range

Sorted List
(Start Page# ↓)

Pointer

Pointer

Pointer

Histogram Bucket ID (X,Y)

Histograms on X and Y

Start End

1 10 1 0 … 1 0

1,1 1,2 … 4,3 4,4

26 30 0 1 … 0 1

11 25 0 1 … 0 0



Experimental Environment

• Datasets
• NYC Taxi Trips 175 GB

• Parameter setting
• Hippo: Histogram bucket (H) 400, Partial histogram density(D) 20%
• BRIN: Page per range (P) 128



Indexing Overhead

• Index size
• Hippo: 100x < GiST
• BRIN: 100x < Hippo

• Reason
• Index pages not tuples
• Partial histogram > MBR

Log. scale

Log. scale



Indexing Overhead (cont.)

• Index initialization time
• Hippo, BRIN-Spatial 100x < GiST
• Hippo takes 60% time of BRIN

• Reason
• Hierarchy > flat index structure
• GiST writes lots of temporary disk files
• BRIN in-memory entry is updated frequently

Log. scale



Indexing Overhead (cont.)

Page
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Node

Node

Non-leaf

Node Node

Node Node Node

…

…

DBMS

StartPageID EndPageID Bit 1 Bit 2 … Bit b DBMS

DBMS

GiST

Hippo

StartPageID EndPageID Xmin Ymin Xmax Ymax

BRIN
StartPageID EndPageID Bit 1 Bit 2 … Bit b

StartPageID EndPageID Xmin Ymin Xmax Ymax



Query Response Time: vary query selectivity factor

• Hippo ≈ GiST at 0.1% and 1% selectivity
• BRIN is always the worst



Index Probe Time: vary query selectivity factor

• Hippo and BRIN have constant index probe time
• Search all index entries for a given query

• GiST index probe time increases along with selectivity factor

Log. scale



Inspected Pages: vary query selectivity factor

• Hippo inspects 5 times less disk pages than BRIN
• BRIN searches too many pages with 32, 128, 512 pages per range
• Higher density makes Hippo inspect more pages



Query Response Time: vary query areas

• Setting
• Area: percent of NYC region area
• Dense locations, Time Square, JFK,…; Random locations, random within NYC

• Hippo works better in dense locations, medium selectivity factors

• GiST works better in random locations, highly selective queries



Maintenance time: vary update ratio

• Insertion: 
• Hippo 100x < GiST, flat index structure
• BRIN 50x < Hippo, Hippo updates partial histogram

• Deletion: Hippo 100x < GiST; BRIN > Hippo, BRIN has to re-build

Log. scale



Throughput: Hybrid workloads

• Queries + Updates
• Update-intensive workloads (10%-50%), Hippo is 100x > GiST
• Query-intensive workloads (70%-90%), Hippo ≈ GiST



Summary of Results
Metric GiST-Spatial Hippo-Spatial BRIN-Spatial

Storage overhead 84 GB 2 GB 10 MB

Initialization time 28 hours 30 minutes 45 minutes

Favored selectivity query 0.001% selectivity selectivity between 
0.01% and 1% X

Favored dense area query 10-5% range query 
area

range query area ≥ 
10−4% X

Index insertion 6 minutes for 
inserting 10−4% data

4 seconds for 
inserting 10−4% data

1 second for 
inserting 10−4% data

Index deletion 2 hours for deleting 
10−4% data

2 min for deleting 
10−4% data Index rebuilt

Hybrid workload Query-intensive Balanced Workload 
and Update-intensive Update-intensive



Take-home Lesson

• Do not use GiST (spatial tree index) if limited storage
• Do not use BRIN or Hippo for Yelp-like applications.
• Use Hippo for spatial analytics applications over 

dynamic and dense spatial data.
• query selectivity is 0.1% - 1%, update-intensive workloads

Use GiST

Use Hippo



Questions?

Build Hippo
CREATE INDEX hippo_idx ON hippo_tbl USING hippo (randomNumber) WITH (density = 20); 

9.6.1 
kernel 

https://github.com/DataSystemsLab/hippo-postgresql

https://github.com/DataSystemsLab/hippo-postgresql



