GEOSPATIAL VISUAL ANALYTICS BELONGS TO DATABASE SYSTEMS

Jia Yu

Advisor: Mohamed Sarwat

BIG SPATIAL DATA ERA

Social Media

1.19 billion monthly active users as of September 30, 2013

Scientific Data

Urban Data

400GB of Road Network Data

Medical Data

85 Billion neurons in the brain nervous system

Mobile Devices

NYCTAXITRIPS

Over a billion taxi trips between 2009 and 2015 released by NYC taxi and limousine services

Pick Up Time	Pick up location	Drop Off Location	Fare amount	
	Laguardia	Manhattan	\$40	
2	JFK	Empire State	\$30	

Run a sequence of spatial database queries:

Return all the NYC taxi trips for which the pick up location is within the Laguardia airport region

OR

HEAT MAP OF NYCTAXITRIPS

GEOVIZ

Not Scalable

Google Maps

GeoSpatial Map Visualization Tool

Not Interactive

ON-TOP DB APPROACH

- (I) Load / Parse data: HDFS, S3, PostgreSQL
- (2) Spatial Query: PostgreSQL, Hadoop, Spark (GeoSpark)
- (3) Then do data visualization using Google Map, MapBox, ArcGIS, MapD

Painful process of jumping between query processing and data visualization especially with Big Data

Map Visualization Scatter Plot Heat Map Choropleth Map **Spatial Query Processing Spatial Datasets** Polygon Data Rectangle Data . . . Point Data

REGULAR EXECUTION PLAN (DISTRIBUTED)

GEOVIZ & DBMS

Implement the Geospatial Visual Analytics functionality ontop of the database system

VISUAL ANALYTICS IN THE DATABASE

Reduce the overhead of loading the data to a Map Visualization tool

BABYLON

AN END-TO-END VISUAL ANALYTICS SYSTEMS FOR MASSIVE-SCALE GEOSPATIAL DATA

SELECT ScatterPlot_OSM_L6 (taxi.pickup)
FROM NYCtaxi taxi
WHERE ST_WITHIN(taxi.pickup, ManhattanBound)

Pick Up Time		Drop Off Location		
1	Laguardia	Manhatta n	\$40	
2	JFK	Empire State	\$30	

GEOVIZ QUERY

Use SQL for both Map Visualization and Data Preparation

BABYLON

Map Visualizaiton (MapViz) Operators

Pixelize

Task Optimizer

GeoViz

Pixel Aggregate

Render | Overlay

Spatial Query Operators

GeoViz Query Execution Plans

GeoViz_Range

GeoViz_Join

GeoViz-Aware Spatial Partitioner

Pick Up Time	Pick up location	Drop Off Location	Fare amount	•••
	Laguardia	Manhattan	\$40	
2	JFK	Empire State	\$30	

Rendered image tiles

(a) GeoViz-aware partitioner (16 tiles, 50 partitions, maximum tile splitting level = 2)

(b) Map tile partitioning

(c) R-Tree partitioning

GEOVIZ PARTITIONING

The partitioning is balanced based upon both the Spatial proximity and the visualization constraints

INTEGRATE OPERATORS

By adopting the GeoVizDB approach,
Babylon can achieve more than an
order magnitude faster Data to
Visualization time than state-of-the-art
GeoViz systems

OPTIMIZATION OPPORTUNITES

Alternate Pixelization and Pixel Aggregation and Spatial Query operators

OPPORTUNITIES

- Leverage existing database ideas, e.g., materialized view maintenance to support dynamic GeoViz
- Leverage GPU-accelerated databases (e.g., MapD) for massive parallelization of data aggregation and map rendering
- More representative and accurate GeoViz-Aware Sampling Techniques
- Deduce Human-Map-Interaction prediction models

Babylon is open-sourced on GitHub

https://github.com/DataSystemsLab/Babylon

THE DATA SYSTEMS LAB

https://www.datasyslab.net

