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Abstract—In this paper, we present a middleware framework
that runs on top of a SQL data system with the purpose of
increasing the interactivity of geospatial visualization dashboards.
The proposed system adopts a sampling cube approach that
stores pre-materialized spatial samples and allows users to define
their own accuracy loss function such that the produced samples
can be used for various user-defined visualization tasks. The
system ensures that the difference between the sample fed into
the visualization dashboard and the raw query answer never
exceeds the user-specified loss threshold. To reduce the number
of cells in the sampling cube and hence mitigate the initialization
time and memory utilization, the system employs two main
strategies: (1) a partially materialized cube to only materialize
local samples of those queries for which the global sample (the
sample drawn from the entire dataset) exceeds the required
accuracy loss threshold. (2) a sample selection technique that
finds similarities between different local samples and only persists
a few representative samples. Based on the extensive experimental
evaluation, Tabula can bring down the total data-to-visualization
time (including both data-system and visualization times) of a
heat map generated over 700 million taxi rides to 600 milliseconds
with 250 meters user-defined accuracy loss. Besides, Tabula costs
up to two orders of magnitude less memory footprint (e.g., only
800 MB for the running example) and one order of magnitude
less initialization time than the fully materialized sampling cube.

I. INTRODUCTION

When a user explores a spatial dataset using a visualization
dashboard, such as Tableau and ArcGIS, that often involves
several interactions between the dashboard and the underlying
data system. In each interaction, the dashboard application
first issues a query to extract the data of interest from the
underlying data system (e.g., PostGIS and Apache Spark
SQL), and then runs the visual analysis task (e.g., heat maps
and statistical analysis) on the selected data. Based on the
visualization result, the user may iteratively go through such
steps several times to explore various subsets of the database.

Running example. Figure 1 depicts a dashboard that visu-
alizes 700 Million taxi rides data stored as a 100 GB database
table; each tuple represents a taxi ride with various attributes
(i.e., columns) such as the pick-up and drop-off dates/times,
pick-up and drop-off locations, trip distances (denoted as D),
passenger count (denoted as C), payment method (denoted as
M), itemized fare amount, tip and so on. The user can first
select all taxi rides paid by cash using filters on the right pane
and then plots the pickup location of such rides on a heat map.
She may then select taxi rides paid by credit card and render
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Fig. 1: A real interactive spatial visualization dashboard in Tableau

another heat map to visually compare the difference between
the two maps.

Every interaction between the visualization dashboard and
the underlying data system may take a significant amount of
time (denoted as data-to-visualization time) to run, especially
over large-scale data. The reason is two-fold: (1) The data-
system query time proportionally increases with the volume
of the underlying data table. Even scalable data processing
systems such as Apache Spark and Hadoop, which parallelize
the query execution, still exhibit non-negligible latency on
large scale data. (2) Existing spatial visualization dashboards
such as Tableau, ArcGIS and Apache Zeppelin work well for
small to medium size data but do not scale to large datasets.
Furthermore, since the user may perform various visualization
effects on the same dashboard (e.g., 3 different tasks in
Figure 1), practitioners would prefer to use a more generic
approach to reduce the data-to-visualization time rather than
install several different and isolated systems.

To remedy that, one approach that practitioners use is
to draw a smaller sample of the entire data table (e.g., 1
million tuples) and materialize the sample in the database.
This approach then keeps executing the dashboard on the
materialized sample instead of the actual data set. The caveat
is that running queries on the sample may lead to inaccurate
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Fig. 2: Iterations between spatial visualization dashboards and data
systems with different sampling approaches

visualization results since the query answer may significantly
deviate from the actual answer especially for some small data
populations. As shown in Figure 2, the approach that runs
a query on the pre-built sample (denoted as SampleFirst)
generates different visualization results in Tableau (Figure 2b)
as compared to the approach that runs the query on the entire
data table (Figure 2a). The SampleFirst approach even misses
important visual patterns (the taxi rides from an airport, the
red circle), and hence may mislead the user.

Recent research works such as Sample+Seek [1],
BlinkDB [2], and SnappyData [3] address the problem of
enhancing the accuracy of pre-built samples for approximate
query processing. These approaches create stratified samples
over multi-dimensional data to improve accuracy with a given
confidence level. However, the pre-built stratified samples
have no deterministic accuracy guarantee. So these systems
may still need to perform some queries over the entire
underlying table in an online fashion. Most importantly,
all aforementioned approaches only support classic OLAP
aggregate measures, such as COUNT, AVG, and cannot be
easily extended to other types of data analysis (e.g., linear
regression and most spatial visual effects in Figure 1). Instead
of creating pre-built samples, an alternative approach runs
data-system queries over the entire table for every iteration,
draws a sample of the extracted population and sends it back
to the visualization dashboard to shorten the visualization
time. Although this approach (denoted as SampleOnTheFly)
can certainly achieve higher and deterministic accuracy for
the selected population, it is prohibitively expensive since
it has to query the original table to prepare the sample for
every user interaction.

In this paper, we present Tabula, a middleware framework
that sits between a SQL data system and a spatial visualization
dashboard to make the user experience with the dashboard
more seamless and interactive. Tabula can seamlessly integrate

with the existing data system infrastructure (e.g., PostgreSQL,
SparkSQL). As opposed to Nanocube and its variants [4],
Tabula (given its inherent design as a middleware system) can
work in concert with existing visual exploration tools such
as Tableau and ArcGIS. Similar to Tabula, POIsam [5] and
VAS [5] propose an online sampling technique to produce
samples specifically optimized for spatial visual analysis.
However, as opposed to Tabula, POIsam and VAS resort to the
SampleOnTheFly approach to guarantee the sampling quality,
which takes its toll on the overall data-to-visualization (as we
prove in Section V).

Tabula adopts a materialized sampling cube approach, which
pre-materializes samples, not for the entire table as in the
SampleFirst approach, but for the results of potentially un-
foreseen queries (represented by an OLAP cube cell). Note
that Tabula stores the sampling cube in the underlying data
system. In each dashboard interaction, the system fetches a
readily materialized sample for a given SQL query, which
mitigates the data-system time. To scale, Tabula employs two
strategies to reduce the sampling cube initialization time and
memory utilization: (1) a partially materialized cube which
only materializes local samples of those queries for which
the global sample (the sample drawn from the entire dataset)
exceeds the required accuracy loss threshold. (2) a sample
selection technique to further reduce memory footprint. It finds
similarities between different local samples, only persists a few
representative samples, then uses the representative sample as
an answer to many queries.

Since the dashboard application may show several types
of visualization effects (see Figure 1), Tabula allows users
to extend the system’s functionality by declaring their own
user-defined accuracy loss function that fits each specific
visualization effect. The system automatically incorporates
the user-defined accuracy loss function in the sampling cube
initialization and representative sample selection algorithms.
Moreover, it always ensures that the accuracy loss due to
using the sample never exceeds a user-specified deterministic
accuracy loss threshold (100% confidence). That happens
because Tabula efficiently examines the accuracy loss for all
unforeseen queries when initializing the sampling cube.

We built a prototype of Tabula on top of SparkSQL and
conducted extensive experiments to study the performance
of Tabula and several other systems such as SampleFirst,
SampleOnTheFly, SnappyData [3] and POIsam [5]. Based
on the experiments, Tabula can bring down the total data-to-
visualization time (including both data-system and visualiza-
tion times) of a heat map generated over 700 million taxi rides
to 600 milliseconds with 250 meters user-defined accuracy
loss. It could be up to 20 times faster than its counterparts.
Besides, Tabula costs up to two orders of magnitude less
memory footprint (e.g., only 800 MB for the running example)
and one order of magnitude less initialization time than the
fully materialized sampling cube approach.

It is worth noting that the techniques proposed in this paper
may be applied to both geospatial data and regular data visual
analysis. For example, Section II shows that the generic user-
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Fig. 3: Tabula overview. Samples in red cells are materialized. DCM
cuboid doesn’t show due to visualization limitation.

defined accuracy loss function can be about statistical mean
and geospatial heat maps. Having said that, we believe that
geospatial visualization is the most important scenario on
which Tabula has a direct impact.

II. USING TABULA

Figure 3 gives an overview of Tabula. A user must initialize
Tabula by providing the following system parameters as input:
(1) User-defined accuracy loss function (abbr. 1oss () ): This
function determines how to calculate the accuracy loss due
to using the sample as opposed to the original query an-
swer. (2) Accuracy loss threshold 6: this parameter decides
the acceptable accuracy for all queries processed by Tabula
(3) Target attribute attr on which loss () measures the
accuracy loss (4) Cubed attributes: the set of attributes that
will be used to build the sampling cube (e.g., attributes D, C
and M). Data-system SQL queries will use these attributes in
WHERE clause predicates. The user feeds such parameters to
Tabula as follows:

CREATE TABLE [sampling cube name] AS
SELECT [cubed attributes], SAMPLING (*, [0#]) AS sample
FROM [table name]
GROUPBY CUBE ( [cubed attributes])
HAVING [loss function name] ([attr], Samgiobal) > [0]

where Samg;,pq; represents a sample constructed by Tabula
over the entire table using random sampling. SAMPLING () is
a Tabula-specific function that takes a dataset represented as a
set of tuples and produces a sample of that dataset such that
the accuracy of the produced sample, compared to the original
dataset, does not exceed the accuracy loss threshold 6. Using
the above SQL query, Tabula leverages the underlying data
system to initialize a materialized sampling cube. The data

system can be any system that supports the CUBE operator.
Queryl in Figure 3 is an initialization query for the running
example.

Once the sampling cube is initialized, the user, via the
spatial visualization dashboard, can issue SQL queries to
Tabula, as follows:

SELECT sample FROM
WHERE [conditions]

[sampling cube name]

After receiving this query, Tabula directly fetches a materi-
alized sample from the sampling cube and returns it back to the
visualization dashboard. This way, Tabula significantly reduces
both the data-system time and visualization time. Besides, the
system always guarantees with 100% confidence level that the
accuracy loss from using the returned sample, as compared to
the original query answer, does not exceed the accuracy loss
threshold 6. It is worth noting that the attributes in the WHERE
clause must be a subset of the cubed attributes specified in the
initialization query. Query2 in Figure 3 is an example query
which asks for a sample of tuples that satisfy D = [0, 5)
AND C = 1. The user can then issue subsequent queries with
a different set of attributes to run the same or different analysis
on various populations.

User-defined accuracy loss function. The visual analytics
result obtained from a sample should be very close to that
from the raw data. In this paper, we formalize the difference
as accuracy loss. There are many ways to compute accuracy
loss, which serve different purposes. In fact, one size does
not fit all. The accuracy loss highly depends on the type of
analysis the user plans to perform. That is the main reason why
Tabula provides a generic approach for the user to declaratively
define her custom made accuracy loss function that suits the
analytics task at hand. The body of this function is a user-
defined scalar expression over several aggregate functions. The
standard SQL syntax is given below (supported by databases
such as PostgreSQL):

CREATE AGGREGATE loss (Raw, Sam)
RETURN decimal_value AS
BEGIN scalar_expression END

Such a function takes raw data and sample data as input,
then returns a decimal value which is the accuracy loss. For
instance, consider an analytics task which requires a low
relative error between the statistical mean of the sample and
the statistical mean of the raw data. Such an accuracy loss
function is implemented in Tabula as follows:

AVG(Raw) — AVG(Sam)
AV G(Raw)

Function 1. Becin ass( ) END

Another example is the geospatial heat map on taxi pickup
locations in Figure 1, where the accuracy loss function can
stem from recent work on spatial visualization-aware sam-
pling (VAS [6] and POIsam [5]). In that case, the user may
implement the accuracy loss as the average minimum distance
between the sample and raw data, as follows:

TRawl | 2

r€Raw

Function 2. BecIN MIN;esam(losspair(x, s)) END
where [055pqir(X, s) is the Euclidean distance, Manhattan

distance or any distance metric between two data objects.



The third example is the linear regression analysis on trip tip
amount VS. fare amount in Figure 1, where the accuracy loss
function calculates the angle difference between the regression
lines of raw data and sample data, as follows:

Function 3. Becin ABS (angle(Raw) — angle(Sam)) END

Given n tuples each of which has a 2D attribute (x;, y;),
we use the following function to calculate the slope [7]:
nX(z; xyi) — L * Ly

anf — (Bx;)?

slope =

We then convert slope to angle (unit: degree °). Eventually,
the corresponding visual analysis task plots the regression line
of data of interest: y = slope xx +intercept. In this example,
the loss function uses fare amount as X, tip amount as y.

Tabula requires that the accuracy loss function must be
algebraic (see definitions in Section VI). To achieve that, all
aggregate functions and mathematical operators involved in
calculating loss(Raw, Sam) must be distributive or algebraic.
In fact, many common aggregations satisfy this restriction [8]
including SUM, COUNT, AVG, STD_DEV, MIN, MAX,
DISTINCT, TOP-K, excluding MEDIAN.

Once the user defines the accuracy loss function, Tabula em-
beds such a function in the core components of the sampling
cube. For instance, if the user defines the statistical mean-
aware accuracy loss function (discussed previously) and sets
the value of the accuracy loss threshold # = 10%, Tabula
will guarantee with 100% confidence that the relative error
due to using the statistical mean of every sample in the cube
will never exceed 10%. On the other hand, if the user uses
geospatial heat map-aware sampling accuracy loss and sets
the value of 6 to an absolute loss value, 1 meter, then Tabula
guarantees that the average min distance between the raw
query result and the returned sample will never exceed 1 meter.

III. MATERIALIZED SAMPLING CUBE

After the user issues the initialization query (presented in
Section II), Tabula builds a partially materialized sampling
cube and stores it in the underlying data system. The sys-
tem only materializes local samples for a selected set of
cells in the sampling cube, namely iceberg cells. A cell
that satisfies loss(cell data, Samg;pe) > 6 (SQL equiva-
lent: loss ([target attribute], Samgopa) > 0) is
called an iceberg cell. Otherwise, Tabula will use the global
sample to answer a query corresponding to a non-iceberg
cell. Figure 3 gives the layout of a sampling cube, which
contains a cube table (see Figure 4(a)) and a sample table
(see Figure 4(b)). All cells depicted in Figure 4(a) are iceberg
cells. A cell in the materialized sampling cube is defined as
(a1, az, ..., an : sample_id), where n is the number of cubed
attributes. sample_id points to a sample in the sample table and
many cells may share the same sample_ids because of Tabula’s
optimization in Section IV. Cell ([0,5), null,null : 1) and
([0,5), 1, credit : 1) both share the same sample set whose id
is 1. ‘null’ indicates *. In the rest of this section, we will first
explain how the sampling module of Tabula can harness the

[0,5) | (null) (null) 1

[0, 5) 1 credit 1

[0, 5) 1 dispute 2

[0, 5) 1 (null) 1

[0,5) 2 cash 3

[0, 5) 2 credit 2

[0,5) 2 (null) 2 1 | {tupletuple,...}

[0, 5) 3 dispute 3

[0, 5) 4 cash 3 2 | {tupletuple,...}
3 | {tuple,tuple,...}

(a) A part of the cube table. This table
only stores iceberg cells.

(b) Sample table

Fig. 4: Tabula sampling cube physical layout

user-defined accuracy loss function to draw samples. We will
then explain how the system finds iceberg cells and efficiently
constructs the sampling cube using the sampling module.

A. Accuracy Loss-Aware Sampling

The sampling function (i.e., SAMPLING (*, [#]) in Sec-
tion III) aims at generating a sample with the objective to min-
imize the sample size while guaranteeing loss(Raw, Sam) <
. Since classic sampling algorithms such as random and
stratified sampling do not handle a user-defined accuracy loss
function, the sampling module in Tabula employs a generic
sampling algorithm, which works for a generic accuracy loss
function. The sampling problem can be formally defined as
follows:

Definition 4 (Sampling problem). Given a dataset T, an ac-
curacy loss function (loss()), and an accuracy loss threshold
0, select a subset t from T such that: (1) loss(T,t) < 0 and
(2) The size of t is minimized.

The sampling module in Tabula employs a greedy algorithm
similar to the algorithm proposed by POIsam [5]. However,
our algorithm guarantees that loss(T,t) < 6 but the sample
size may not be minimal. Algorithm 1 depicts the major steps
of this algorithm: it first creates an empty sample set t which
has loss(T,t) = co. In each greedy selection round, for every
remaining tuple ¢p in T, it computes loss(originalT,t + tp).
OriginalT is the original raw dataset T. It always picks from T
(without replacement) the tuple which has the minimum loss
and adds it to t. This algorithm keeps picking tuples from T
and adds them into t until loss(originalT,t) <= 6. Tabula
further accelerates the greedy algorithm using the lazy-forward
strategy of POIsam (not shown here). The final complexity of
each greedy round is O(k*N) where N is the size of input data
and k is much smaller than N.

Lemma IIL.1. The sampling function SAMPLING () is a
holistic aggregate function.

Proof. The definition of holistic functions is given in Sec-
tion VI. This lemma can be proved by contradiction but the
full proof is omitted for brevity.

O



Algorithm 1: Greedy algorithm for sampling

Data: A dataset T, loss (), 0
Result: A sample t
1 Create an empty list t;
2 Create a copy of T originalT;
3 loss=o0;
4 while loss> 60 do

5 minTuple = NULL;

6 foreach tuple tp in T do

7 tp_loss= loss(originalT, t+tp);
8 if tp_loss< loss then

9 loss= tp_loss;

10 minTuple = tp

11 t.add(minTuple);

12 T.remove(minTuple);
13 return ¢

Any data cube with such a holistic aggregate function cannot
leverage state-of-the-art cube construction approaches [9].

B. Sampling Cube Initialization

The straightforward way to initialize a sampling cube is as
follows: First, Tabula draws a global random sample, called
Samgjopq;, from the entire raw dataset. Second, it builds
the sampling cube by running a set of GroupBy queries to
calculate all cuboids in the cube (a cuboid [10] is a GroupBy
query). This can be done via using the SQL CUBE operator
in the underlying DBMS (see Query 1 in Figure 3). Given
the grouped raw data of each cube cell, if applying the global
sample to this cell satisfies the iceberg condition, i.e., loss(cell
data, Samgjpq;) > 0, Tabula will identify this cell as an
iceberg cell and generate / materialize a local sample (denoted
as Samy,.q) for it.

However, the cost of using the classic CUBE operator
to build the sampling cube increases exponentially with the
number of cubed attributes. In Figure 1, each record may
have five attributes (filters) and running the CUBE operator
on these attributes requires (2° — 1) GroupBy operations over
the entire table. Tabula avoids that by learning which cuboid of
the sampling cube really contains iceberg cells before actually
building the cube, then all unnecessary GroupBys can be
avoided. To achieve that, after drawing the global sample, the
algorithm runs in two main stages, namely: Stage 1: Dry run
for iceberg cell lookup and Stage 2: Real run for sampling
cube construction.

1) Dry Run Stage: Iceberg Cell Lookup: In this stage, the
system identifies all iceberg cuboids (cuboids that have iceberg
cells), by scanning the raw table data only once. According to
the aforementioned straightforward initialization query, Tabula
applies two aggregate functions to each iceberg cell in the
sampling cube: SAMPLING () and loss (). Based on the
literature in OLAP data cube (see Section VI), we know that:
if an aggregate measure is distributive or algebraic, existing
algorithms only need to run the full table GroupBy operation
once to build an initial cuboid and other cuboids can be built
upon it. For a holistic aggregate measure, there are no better
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Fig. 5: Major steps in the initialization algorithm

algorithms to materialize the aggregate measure for each cell
other than building every cuboid from the raw data [9].

Since the sampling function is holistic, although Tabula
only materializes local samples for some cells of the cube
(iceberg cells), the underlying data system has to run (2" -
1) full table GroupBy operations because it cannot speculate
which cells are iceberg cells beforehand (n is the number of
cubed attributes). However, since the loss function is algebraic,
Tabula leverages such property in this stage by utilizing
any existing cube initialization algorithms in Section VI to
efficiently build a partially materialized sampling cube. Such
a cube only uses accuracy loss as the aggregate measure. This
way, Tabula only accesses the raw data once to build the
top/bottom cuboid and then all other cuboids can be derived
from the cuboid itself.

TABLE I: Example tables generated in the dry run stage

(a) Iceberg cell table (b) Cuboid D,C,M
D C

. . M. D. C. M.
(null) (null) credit [0,5) 1 credit
[0, 5) (null) cash [5,10) 1 credit
[5,10) | (null) (null) [15,20) 2 cash
[0, 5) 1 (null) [15,20) 3 cash
[5, 10) 1 (null)

(¢) Cuboid D,C (d) Cuboid D

b [C [ M ][ b [ € [ M |
[0, 5) 1 (null) [ [5, 10) [ (null) [ (null) ]
[5, 10) 1 (null)

The output of the dry run stage is an iceberg cell table
(Table Ia). Tabula then derives iceberg cell tables for each
cuboid (e.g., Table Ib,Ic,Id). In addition, Tabula can also know
the approximate number of all cells and iceberg cells in each
cuboid by checking the global sample. Therefore, based on
these outcomes, we can draw the lattice structure of Tabula
(Figure 5a) without even computing any local samples for now.
Each vertex of the lattice is a cuboid (i.e., GroupBy query)
and letters indicate the attributes that appear on the grouping
list of this cuboid. For instance, the top vertex DCM is the
cuboid that has trip distance, passenger count and payment
method. The bottom vertex “All” actually is not a GroupBy
query because it has no attributes on the grouping list. Two
cuboids 1 and 2 are connected by an edge only if the grouping
list of cuboid 1 is a subset of the grouping list of cuboid 2.
All cells in cuboid 1 can find their descendant cells in 2. As



Algorithm 2: Initialization: Real Run Stage

Data: The raw table tbl and results of the dry run stage
Result: A cube table including samples
1 foreach cuboid cbd in all cuboids do
if its iceberg cell table is not null then
if it statisfies Inequation 1 then
Run equality join tbl with the iceberg cells of
cbd to retrieve data;
Build cbd via a GroupBy on tbl or retrieved data;
Draw a local sample for each iceberg cell;
else
| Skip this cuboid;

P 8

® N & w

depicted in Figure 5a, every colored cuboid contains at least
one iceberg cell. The first number indicates all cells and the
second number indicates iceberg cells.

Global sample size. The size of a sample affects its
accuracy loss. Since Tabula checks the global random sample
against every single cube cell during the dry run stage (builds
local samples later if necessary), the size of the global sample
has no effect on Tabula’s error bound which is the loss
threshold. However, a too small global sample may unnec-
essarily introduce too many iceberg cells. Therefore, Tabula
utilizes Serfling’s Inequality [11], [5] (a lemma of the law of
large numbers) to determine a proper global sample size. Let
T1,2,...T, be a finite set of numbers in [0, 1] with a mean
u, for any € > 0 and 1 < k£ < n, we have

7o) =9

n

]P’{ max

kE<m<n-—1

1 — 2ke?
— €xr; — > el < 2exp(—
Im; ﬂ|7}7 p(—1

where k is the sample size. Therefore, given any relative
ln%

error € of pu and confidence level §, we have k = 58
By default, Tabula uses ¢ = 0.05 and 6 = 0.01. Given the
NYCtaxi dataset (700 million records) used in Section V, the
global sample has around 1000 tuples. This makes sure that
this sample can represent the distribution of the raw dataset.

2) Real Run Stage: Sampling Cube Construction: Based
on the iceberg cell information learned in the dry run stage,
Tabula constructs a sampling cube that only contains iceberg
cuboids. For each cell in this cuboid, the algorithm draws a
local sample if the cell is an iceberg cell. The algorithm per-
forms the same step for all iceberg cuboids until it eventually
builds the sampling cube (see Figure 6).

Algorithm 2 gives the detailed pseudocode of the real run
stage. The dry run stage has shown the number of iceberg
cells in each cuboid (e.g., Table Ia), so Tabula can easily skip
these non-iceberg cuboids (uncolored cuboids in Figure 5a)
and work on iceberg cuboids that have at least one iceberg cell
(red-colored cuboids in Figure 5a). For each iceberg cuboid,
the algorithm then fetches the raw data that correspond to each
iceberg cell in this cuboid. That can be done in two different
ways: (1) Run a GroupBy operation using the cuboid attributes
on the raw data and check the iceberg condition before drawing
the sample for a cell (2) Run an equi-join operation between
the cuboid iceberg cell table and the raw data to find the data

# X
[0, 5) 1 credit '
pe
[0,5) 1 dispute |~
05 2 () |
[0,5) 2 cash "Tr ( x

Fig. 6: Output cube table of the initialization algorithm

corresponding to iceberg cells (see Figure 5b), then run the
GroupBy operation on the retrieved raw data of iceberg cells,
and finally draw a local sample for such cells. The second
way is obviously more efficient when the iceberg cuboid only
has a few iceberg cells. To decide that, Tabula employs the
following cost model:

COStPrune + COStGroupP'runedData < COStG'roupAllData

N wit 2N #logi(z N) < N xloge(N) (1)

where N is the cardinality of the table, i is the number of
iceberg cells, k is the number of all cells in this cuboid. If the
inequality holds, Tabula will use the second way mentioned
above. Note that this condition assumes that each cell has the
same amount of grouped raw data.

IV. SAMPLE SELECTION

After the cube initialization, the partially materialized sam-
pling cube may still possess a large memory footprint. That
is because: (1) the number of cuboids and cube cells increase
exponentially as the number of cubed attributes increase (2) for
every iceberg cell, Tabula materializes a sample dataset (not
just a single aggregate value), which may still consist of
hundreds or thousands of tuples.

We observed that a sample in an iceberg cell can actually
be re-used to represent the samples of other iceberg cells.
That happens when applying the sample to those cells still
ensures that loss(raw, sam) < threshold 6. For example, in
Figure 6, the sample stored in Iceberg Cell ([0,5), 1, dispute)
is similar to the raw data of Iceberg Cell ([0,5),2, null).
In this case, we can let Cell ([0, 5), 2, null) use the sample
of ([0,5),1,dispute) instead of materializing its own local
sample. The sample of ([0,5), 1, dispute) is the representative
sample for these two iceberg cells’ samples. Therefore, to
further reduce the memory footprint, Tabula only persists a
representative set of samples from the cube table, and re-
uses the representative samples in many iceberg cells rather
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than persisting every individual local sample. We define the
representation relationship between two samples as follow:

Definition 5 (Sample Representation relationship). Given the
raw data of an iceberg cell Cell s (format: tuple, tuple, ...)
and its local sample Sam 4 (format: tuple, tuple, ...), the raw
data of another iceberg cell Cellg and its sample Samp.
Sam can represent Samp only if loss(Cellg, Sama) <
loss threshold 6.

To select representative samples, Tabula first evaluates the
relationships among different iceberg cells, which are de-
scribed by a graph, namely sample representation graph (abbr.
SamGraph). See the example in Figure 7.

Definition 6 (SamGraph). SamGraph(V, E) is a directed
graph, where V and E represent the set of vertexes and edges,
respectively. Each v € V represents a local sample stored in
an iceberg cell. A directed edge from vertex v to u indicates
that the sample v can represent the sample u. A bi-directed
edge between a vertex v and u means that both samples v and
u can represent each other.

To build the SamGraph, Tabula performs an inner join on
the cube table generated by the initialization algorithm (Sec-
tion III-B). The join condition is the representation relationship
depicted above. We can express the inner join query using a
SQL query as follows:

SELECT t1.D, tl1.C, tl1.M, t2.D, t2.C, t2.M
FROM cube_table tl, cube_table_no_rawdata t2
WHERE loss(tl.cellrawdata, t2.sample) < threshold

where cube_table is the cube table in Figure 6 and
cube_table_no_rawdata is the same table but without raw data.
Because the loss function may need some measures of the cell
raw data (e.g., AVG), the cube table from the initialization
algorithm needs to carry the raw data for each iceberg cell.
Therefore, the cube table generated by the real run stage
has a column named Cell Raw Data. Note that this join
can be accelerated by any existing image/data similarity join
algorithms. In addition, this join result does not have to exhaust
all possible representation relationships. Sample selection on a
non-exhaustive SamGraph may not minimize Tabula’s memory
footprint but still ensures Tabula’s bounded-error guarantee.

Tabula traverses the SamGraph to select the representative
samples, only persists selected samples, and drops the rest.
We formally define the Representative Sample Selection (abbr.
RepSamSel) problem as follows:

Algorithm 3: Representative Sample Selection

Data: SamGraph(V, E), each edge is denoted as
(head, tail). head and tail are sample IDs
Result: A set D which consists of many sample IDs
Group edges E by head sample IDs;
// Sort head sample IDs by their
outdegress
Sort groups in the descending order of the group counts;
Create a LinkedHashMap H M (head, {tail, tail, ..});
Insert sorted groups one by one into H M
Create a representative set D = (J;
while HM /= () do
// Pick sample ID by outdegress
7 Remove the top map (head, {tail,tail,..}) from HM;
8 Put head in D;
// Remove samples that are represented
by head
9 foreach rail in {tail,tail,..} do
10 \ Remove the map whose key is tail, from HM

—
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Definition 7 (Representative Sample Selection). Given a Sam-
Graph = (V, E), select a subset D of V such that: (1) For every
vertex v & D, v is represented by at least a vertex u € D and
(2) The size of D is minimized.

As depicted above, the main objective is to persist a minimal
set of local samples and every unpersisted local sample can
be represented by a persisted local sample. The first condition
guarantees that if a local sample is not selected to be persisted,
each iceberg cell can still use one of the persisted samples
to answer queries. The second condition ensures that Tabula
selects the minimum number of samples to persist/maintain,
and hence reduces the overall memory space occupied by the
sampling cube.

Lemma IV.1. The representative sample selection (RepSam-
Sel) problem is NP-Hard.

Proof. That can be proved by reducing the Minimum Domi-
nating Set (MDS) problem which is known to be NP-hard [12]
to RepSamSel problem. We first relax the representation
relationship: if sample A can represent sample B, then sample
B can also represent A. Then, we can change all edges in Sam-
Graph (V, G) to bi-directed edges. Now RepSamSel problem
is identical to the MDS problem. The RepSamSel problem
on bi-directed SamGraphs is a subset of that on directed
SamGraphs. Therefore, RepSamSel problem is also NP-hard.
The full details of the reduction algorithm is ommitted due to
space limitation. O

Representative Sample Selection Algorithm. Since Rep-
SamSel problem is NP-hard, we resort to a greedy selection
strategy. The algorithm (see Algorithm 3) takes as input the
SamGraph(V, E) and keeps selecting a sample v € V and
inserts it into D based on a greedy strategy, until every
remaining sample in V has at least one representative in D.
The greedy strategy always picks the sample v € V such
that v has the highest number of edges directed from v to
other samples. In other words, the algorithm always selects the



most representative sample among all remaining samples in a
greedy fashion. Given the SamGraph in Figure 7, the greedy
representative sample selection algorithm will pick Sample2
(represents 1,2,3,6,7), Sample8 (represents 3,7,8), Sample5
(represents 5,6) and Sample4 (represents itself), in this par-
ticular order. These four samples compose the representative
samples set and are persisted in a sample table as depicted
in Figure 4(b). The resulting cube table is normalized to the
final cube table such as Figure 4(a) and each iceberg cell of the
final cube table links to a sample id. If the local sample of an
iceberg cell can be linked to multiple samples, we randomly
pick one link to keep.

V. EXPERIMENTS

Compared approaches. All pre-built samples are cached
into the cluster’s memory: (1) SampleFirst (SamFirst): This
approach creates a random sample of the entire dataset before
accepting any query (see the definition in Section I). We use
two SampleFirst versions: 100MB and 1GB pre-built sample
sizes. (2) SampleOnTheFly (SamFly): This approach has no
pre-built samples (see the definition in Section I). It uses
the greedy sampling algorithm (Algorithm 1) to ensure the
deterministic accuracy guarantee. (3) POIsam [5]: It is similar
to SampleOnTheFly but has an extra random sampling step.
After executing every query, it first creates a random sample
on the query result then applies Algorithm 1. Please note
that this greedy algorithm modifies the original POIsam’s
algorithm which fixes returned sample size and minimizes
accuracy loss. POIsam supports visualization-aware sampling
accuracy loss function including 1 dimension and geospatial
data. In the experiments, we use POIsam’s default theoretical
error bound (5%) and confidence level (10%). This means
that the sample produced by POIsam for every online query
can have 5% or more error than Sample on the fly, at 10%
chance. (4) SnappyData [3]: It applies data-system queries
on the stratified samples, then returns an AVG of the query
result. We use the cubed attributes as Query Column Set
(QCS) in the experiments. Two versions of SnappyData are
tested: 100MB and 1GB size pre-built samples. (5) Tabula:
this is the system proposed in this paper. (6) Tabula*: this is
Tabula but does not have the sample selection technique. (7)
Sampling cube (FullSamCube): this approach creates a fully
materialized data cube which holds a local sample for every
cell. (8) Partially materialized sampling cube(PartSamCube):
this approach directly executes the initialization query as
shown in Section II. It does not use the initialization algorithm
in Section III-B and sample selection in Section IV.

Evaluation metrics. We use the following metrics to mea-
sure the performance of each approach: (1) Initialization time:
The time used to initialize the systems. We show the initializa-
tion time of Tabula, FullSamCube, PartSamCube, and Snappy-
Data. (2) Memory footprint: The physical memory occupied
by the pre-built / materialized samples in different approaches.
SampleOnTheFly and POIsam do not incur extra memory
space because they always draw samples on the fly. (3)
Data-to-visualization time: it consists of (a) data-system: exe-

cuting data-system queries and running online sampling (only
for SamFly and POIsam). (b) sample visualization: performing
visual analysis tasks (exclude SnappyData). SnappyData has
no visual analysis time because it takes a query and directly
renders a conclusion, which is AVG. (4) Actual accuracy loss:
the actual accuracy loss of the returned sample, calculated
by the user-defined loss function. (5) Query answer size: the
number of tuples sent to /processed by the dashboard.

Dataset and query attributes. We use the New York City
taxi trips real dataset (NYCtaxi) [13] which is mentioned in
the running example. We pre-cache the entire dataset into the
cluster’s memory before initializing or using any approach.
There are 7 categorical attributes used in the experiments:
vendor name, pickup weekday, passenger count, payment type,
rate code, store and forward, dropoff weekday. We use the first
4, 5, 6, 7 attributes in the predicates of data-system queries.
Full data cubes built upon these attributes have 3 thousand, 17
thousand, 47 thousand and 151 thousand cells, respectively.
The first 5 attributes are used by default.

User defined accuracy loss functions. (1) Statistical mean
loss: this is Function 1 which checks against fare amount
attribute of NYCtaxi data. (2) Geospatial heatmap-aware loss
function: this is Function 2 (3) Linear regression loss: this is
Function 3 (4) Histogram-aware loss: this is Function 2 but it
is calculated on 1-dimension data (using Euclidean distance).
The corresponding analysis task is shown in Figure 1. This
function checks against NYCtaxi fare amount attribute so the
distance unit is US dollar.

Analytics workload. We build a full data cube on n
attributes then randomly pick 100 SQL queries (cells) from
the cube. All compared approaches will then run these queries.
Returned query answers are passed to the visualization dash-
board in files. To quantitatively measure the visual analysis
performance, we use two well-known analysis tools to record
the corresponding visual analysis time: (1) Matlab: a renowned
scientific computing software. We leverage it to draw his-
togram and geospatial heatmaps on results returned in cor-
responding accuracy loss based experiments. (2) Scikit Learn:
a widely used machine learning Python library. We use it to
calculate statistical means and linear regression functions of
returned query answers. All analysis tasks are executed on the
master machine of the cluster.

Cluster settings. All compared approaches are implemented
with Apache Spark. We conduct the experiments on a cluster
which has one master node and four worker nodes. Each
machine has an Intel Xeon E5-2687WV4 CPU (12 cores,
3.0 GHz per core), 100 GB memory, and 4 TB HDD. We
also install Apache Hadoop 2.6, Apache Spark 2.3, and
SnappyData Enterprise 1.0.2.1 (column store).

A. Initialization time

In this section, we study the initialization time of different
approaches (see Figure 8 and 10a). We vary the value of
the user specified loss threshold §. SampleFirst’s initializa-
tion time is omitted because the random sampling time is
negligible compared to other approaches. We compare Tabula
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against FullSamCube and PartSamCube on a small dataset,
5GB NYCtaxi (see Figure 10a) using histogram-aware loss
function, because FullSamCube and PartSamCube incur high
initialization time and cannot scale to the full NYCtaxi dataset.
We also show the execution time of the dry run stage, real run
stage and sample selection (denoted as SamS) of Tabula.

As shown in Figure 10a, Tabula takes around 40 times
less initialization time compared to FullSamCube and Part-
SamCube. This makes sense because Tabula utilizes the dry
run stage to skip many unnecessary GroupBys while other
approaches run 2" — 1 GroupBy operations (n is the number
of attributes). As depicted in Figure 8, the dry run stage exe-
cution time remains the same for different user specified loss
thresholds but the overall initialization time of Tabula increases
with the decrease of loss threshold. This is because a lower
value of § introduces more iceberg cells. Tabula always spends
the same amount of time on the dry run stage to identify
iceberg cells. However, if there are more iceberg cells, Tabula
will take more time to draw local samples for iceberg cells in
the real run stage and select representative samples in sample
selection. It is also worth noting that geospatial heatmap-aware
loss functions lead to Tabula consuming more time on the dry
run stage while statistical mean costs the least time on that.
This makes sense because the visualization-aware loss function
involves complex tuple-to-tuple calculation compared to the
statistical mean loss function.

B. Memory footprint

In this section, we study the memory footprint of Tabula
for different accuracy loss functions. Tabula consists of three
physical components in memory, global sample, cube table
(Figure 4a) and sample table (Figure 4b). Tabula* does not
have the sample table. As depicted in Figure 9, decreasing the
value of 6 leads to more memory space occupied by Tabula.
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Fig. 10: Cubing overhead on 5GB NYCtaxi data

That happens because a smaller 6 results in more iceberg
cells and more materialized local samples. Among the three
components of Tabula, the global sample size remains the
same for different 6 values because this size is only related
to the raw dataset scale according to Section III-B1. Both the
cube and sample tables increase for smaller thresholds but the
sample tables are at least 100 times larger than the cube tables.
This makes sense because the cube table only contains simple
iceberg cell information without any materialized samples.
Tabula* is around 50 times larger than Tabula because it does
not employ the sample selection technique.

As depicted in Figure 10b, the size of FullSamCube remains
the same for different thresholds because it always materializes
local samples for all cube cells regardless of thresholds while
PartSamCube only materializes samples for iceberg cells.
FullSamCube is around 50-100 times larger than Tabula while
PartSamCube is around 5 - 8 times larger than Tabula because
PartSamCube does not contain the sample selection technique.

C. Data-to-visualization time

We study the effect of various accuracy loss functions
and threshold values on the total data-to-visualization time.
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We only run analysis tasks using the smallest accuracy loss
thresholds (#) for all accuracy loss functions and report the
time in Table II.

In terms of data-system time, as shown in Figures 11a,14a
and 13a, the data-system time of SamFirst remains the same
for all threshold values and loss functions because the only
factor that can affect SamFirst is the size of its pre-built
sample. POIsam and SampleOnTheFly are 10 times and 20
times slower than Tabula. This is because Tabula quickly
returns either the materialized global or a local sample while
POIsam and SampleOnTheFly always query the entire dataset
and draw samples on the fly. Although we pre-cached the
entire dataset and ran queries in parallel, the query time is
still significantly large. POIsam can reduce the online sampling
time, but its data-system time is still non-negligible.

TABLE II: Sample visualization time of different approaches

[ Approach [ Geospatial heat map | Statistical mean | Regression |
SamPFirst-100MB 29 ms 0.02 ms 0.07 ms
SamFirst -1GB 59 ms 0.13 ms 0.15 ms
SamFly 146 ms 0.01 ms 0.29 ms
POIsam 143 ms - -
Tabula 390 ms 0.13 ms 1.33 ms
No sampling 330 sec 1.8 sec 1.9 sec

In terms of the sample visualization time, as shown in
Table II, Tabula has the highest visual analysis time among all
compared approaches because it sometimes returns the global
sample (around 1000 tuples) for queries which hit non-iceberg
cells while other approaches such as SampleOnTheFly and
POIsam only return around 100 tuples for geospatial heat map
loss function. However, analysis tools can still easily render
results for Tabula within several hundred milliseconds because
of the small size of global samples. Please note that it takes

queries, with histogram-aware loss function
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around 3 orders of magnitude more time on analyzing the raw
query result (without any sampling).

D. Studying the actual accuracy loss

In this section, we vary the accuracy loss threshold value
(error bound in SnappyData) and evaluate the actual loss
of samples returned by different approaches. The results are
depicted in Figures 11b,14b and 13b. Error bars indicate the
minimum, average and maximum actual accuracy loss. We
omit the actual accuracy loss of two SamFirst approaches
in figures because their average accuracy loss is 20 times
larger than other approaches for geospatial heatmap-aware
loss functions and 4 times larger than others. As shown in
the figures, as we decrease the threshold value, the actual
loss of POIsam, SampleOnTheFly, SnappyData, and Tabula
decreases. SampleOnTheFly, SnappyData and Tabula never
exceed the thresholds. The actual accuracy loss of POIsam
is around 1%-5% percent larger than SampleOnTheFly and
sometimes, it exceeds the threshold. This makes sense because
POIsam runs the greedy sampling function over a random
sample. Tabula* has similar actual accuracy loss to Tabula
because the sample selection technique does not necessar-
ily increase accuracy loss. Also, SnappyData can guarantee
the error-bound since the actual accuracy loss exceeds the
threshold value, it accesses the raw table and runs queries
and aggregation on-the-fly. Since SnappyData implements its
own optimized block-based column store, its data-system time
is still comparable to Tabula.

E. Impact of the number of attributes

In this section, we evaluate the impact of the number of
attributes. We initialized Tabula on 4, 5, 6 and 7 attributes
of NYCtaxi dataset and use these attributes in data-system



queries. Histogram-aware loss function with “0.5 dollar”
threshold value is used in the experiment. 4 metrics are
reported in Figure 8d, 9d and 12, respectively. The result
of actual accuracy loss is omitted because the number of
attributes has no effect on actual accuracy loss.

As depicted in the figures, in terms of initialization time,
using more cubed attributes leads to higher execution time for
all three initializing stages of Tabula because this introduces
more cube cells as well as iceberg cells. Cube cells increase
exponentially with more cubed attributes. But the number of
attributes has relatively small impact on the dry run stage
because the dominating part in this stage is building the first
cuboid which requires a full table GroupBy. Other cuboids are
derived from the first one.

In terms of memory footprint, the global sample size of
Tabula remains the same because it is only related to the
cardinality of the raw dataset. The sizes of the cube table
and sample table increase with more cubed attributes. But the
growing speed of the sample table becomes slower because,
even though there are more and more iceberg cells and local
samples, Tabula still can only materialize a small number of
local samples as the representatives.

In terms of data-to-visualization time, using more attributes
slightly increases the data-system time of Tabula because of
larger cube tables and sample tables. SampleFirst approaches
have the constant data-system time since they always perform
a full sequential filtering on pre-built samples. The query
time of SampleOnTheFly and POIsam remains the same for
different numbers of attributes because they always perform
a full sequential scan on the raw table. However, the visual
analysis time of SampleFirst drops while using more attributes.
This is because the queries will contain more predicates and
lead to smaller query results. Similarly, the sampling time
of SampleOnTheFly drops significantly while using more
attributes. The online sampling time of POIsam does not
change much because it first draws a random sample of the
raw query result and the random sample size does not change
much (controlled by the law of larger numbers [5]). The
visual analysis time of Tabula slightly reduces while using
more cubed attributes because Tabula returns materialized
local sample for more queries in this situation.

VI. RELATED WORK

Data systems using pre-built samples. In the past two
decades, several research works studied the implementation
of classic sampling techniques such as random sampling,
stratified sampling, cluster sampling, systematic sampling [14],
and spatial sampling in database systems. However, samples
pre-computed by classic sampling techniques may eventually
lead to inaccurate results [15]. To enhance the accuracy of
pre-built samples, recent systems [2], [1], [16], [17], [3]
proposed sampling approaches that take into account different
data populations. Sample+Seek [1] applies approximate query
processing techniques on the data cube and offers a distri-
bution precision guarantee. BlinkDB [2] and SnappyData [3]
support approximate query processing with bounded error over

customized HIVE and Spark clusters. They create stratified
samples over Query Column Set (QCS) to improve accuracy.
But their pre-built stratified samples have no accuracy guaran-
tee so the systems and only support classic OLAP aggregate
measures such as SUM, COUNT, AVG.

Sample on the fly (i.e., Query time sampling). Approxi-
mate query processing [18], [19], [20] rely on sampling. Some
approaches [21], [22] work on placing samplers inside join
queries. Many approximate systems such as ABS [20] and
Quickr [19] focus more on where to place the online sampler
in the query plan. These approaches yield better accuracy and
reduce data-system time but still inevitably access raw datasets
on the fly. A recently proposed approach, namely Dice [23],
[24], applies speculative query execution techniques to predict
the human next query and prefetch the anticipated query
answer upon a data cube [9] that holds pre-computed aggregate
measures (e.g., SUM, COUNT, AVG). Such query speculation
technique speeds up data-system over databases. However,
Dice still runs an online sampler to return a sample for
each query whereas Tabula directly fetches pre-built samples
without accessing raw data because it exhausts all query results
in advance. Moreover, Tabula provides deterministic accu-
racy loss guarantees while other approaches only guarantee
bounded-error with a confidence level.

Data cube initialization algorithms. Gray et al. [9] pro-
posed the concept of data cubes. Later, several papers [25],
[26] proposed more advanced techniques to initialize data
cubes with distributive and algebraic measures. These al-
gorithms require the aggregate measures in the cube to be
distributive or algebraic [9], [8] (1) Distributive: The measure
of a cell can be computed solely based on the same mea-
sure of its descendant cells. For instance, SUM in Cell{x :
SUM) is equal to the sum of (Cash : SUM),(Credit :
SUM), (Dispute : SUM). (2) Algebraic: The measure of a
cell can be computed based on several other types of measures
in its descendant cells, e.g., AVG(). A distributive measure
must be algebraic and an algebraic measure may not be
distributive. All other measures are called holistic measures.
These techniques focus on allocating cuboid groups to pre-
serve data orders in the same group and avoiding unnecessary
raw table accesses. Researchers [10] came up with the iceberg
data cube and a Bottom-Up initialization algorithm to compute
cube distributive measures with minimal overhead. Instead of
persisting all measures, the iceberg cube by nature only stores
a small number of aggregate measures. H-Cubing [27] and
Star-Cubing [28] propose different iceberg cube initialization
algorithms for algebraic measures. However, all aforemen-
tioned cubes only work for algebraic measures.

Methods that accelerate spatial visualization. Researchers
proposed various approaches to accelerate spatial visualization
process on big datasets. POIsam and VAS [5], [6] propose
similar visualization-aware sampling approaches with accu-
racy loss guarantee. They shorten map visualization time but,
in the case of spatial visualization dashboards, still perform
sampling on the fly and have no optimization to reduce online
data-system time. Wang et al. [16] propose a spatial indexing



mechanism that indexes spatial data by different levels such
that their online sampler can run faster and produce more
accurate results. But they do not provide a deterministic accu-
racy loss guarantee and cannot speed up queries that involve
non-spatial attributes. Nano cube [4] and its variants [29] pre-
materialize heat maps and other types of aggregates to answer
online visualization requests. To mitigate the storage overhead,
they design a set of complex visual encoding techniques
to compress materialized aggregates. To query the cubes, a
custom-made front-end visualization tool is required while
Tabula is a middleware system which has no requirements
on both visualization front-ends and underlying data systems.
It is worth noting that the encoding techniques used in these
cubes are complementary to Tabula such that they can work
in concert with our system to further reduce the memory
footprint. Moreover, none of the aforementioned approaches
offer a generic system to uphold various user-defined visual
analytics. Sampling cube’08 [30] has a similar name to the
sampling cube maintained by Tabula but acts very differently;
it builds an iceberg data cube on a sample of the raw table
to speed up the cube initialization. The aggregate measures of
this cube are simple algebraic measures such as AVG.

VII. CONCLUSIONS

In this paper, we presented Tabula as a middleware system
to accelerate the spatial visualization dashboard. It can be
easily extended, thanks to its generic user-defined accuracy
loss function, to support various visual analytics. Tabula adopts
a materialized sampling cube approach, which pre-materializes
sampled answers for a set of potentially unforeseen queries. To
achieve scalability, the system employs a partially materialized
cube to only materialize local samples of iceberg cells based
on the accuracy loss function and a sample selection technique
to selectively materialize representative local samples. The
system ensures the difference between the sample and the
raw query answer never exceeds a user-specified accuracy
loss threshold. According to the experiments, Tabula upholds
different user-defined visual analysis: for complex analysis
such as geospatial visual analytics and linear regression, it
achieves up to 20 times less data-to-visualization time than
SampleOnTheFly-like approaches; for OLAP analytics such
as statistical mean (AVG), it exhibits similar performance to
column-store based SnappyData. The proposed middleware
system also occupies up to two orders of magnitude less
memory footprint and an order of magnitude less initialization
time than the fully materialized sampling cube approach. That
makes Tabula a very practical and scalable approach to deploy
in real geospatial data visualization dashboards.
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