Demonstrating Spindra: A Geographic Knowledge
Graph Management System

Yuhan Sun Jia Yu Mohamed Sarwat
Arizona State University Arizona State University Arizona State University
Tempe, USA Tempe, USA Tempe, USA
ysunl38@asu.edu jlayu2 @asu.edu msarwat@asu.edu

Abstract—Knowledge Graphs are widely used to store facts
about real-world entities and events. With the ubiquity of spatial
data, vertexes or edges in knowledge graphs can possess spatial
location attributes side by side with other non-spatial attributes.
For instance, as of June 2018 the Wikidata knowledge graph
contains 48, 547, 142 data items (i.e., vertexes) to date and ~13%
of them have spatial location attributes. The co-existence of graph
and spatial data in the same geographic knowledge graph allows
users to search the graph with local intent. Many location-
based services such as UberEats, GrubHub, and Yelp already
employ similar knowledge graphs to enhance the location search
experience for their end-users. In this paper, we demonstrate
a system, namely Spindra, that provides efficient management
of geographic knowledge graphs. We demonstrate the system
using an interactive map-based web interface that allows users to
issue location-aware search queries over the WikiData knowledge
graph. The Front-end will then visualize the returned geographic
knowledge to the user using OpenStreetMap.

I. INTRODUCTION

Knowledge Graphs are widely used to store facts about real-
world entities and events. With the ubiquity of spatial data,
vertexes or edges in knowledge graphs can possess spatial lo-
cation attributes side by side with other non-spatial attributes.
For instance, as of June 2018 the Wikidata knowledge graph
contains 48,547,142 data items (i.e., vertexes) to date and
~13% of them have spatial location attributes [7]. Figure 1
depicts a knowledge graph of restaurants, and the type of
dishes they have on their menus. Many location-based services
such as UberEats, GrubHub, and Yelp already employ similar
knowledge graphs to enhance the location search experience
for their end-users. For example, in Figure 1, the co-existence
of graph and spatial data in the same geographic knowledge
graph allows users to search the graph with local intent. An
example query is:

‘Ql:

Asian restaurants that are located within the

Search the geographic knowledge graph for

geographical region of Downtown Macau’

A graph database management system (GDBMS) such as
Neo4j [3] and Titan [6] can be leveraged to efficiently manage
and access a geographic knowledge graph. For instance, a user
can issue graph queries in Neo4j using the Cypher or Gremlin
query language. The system will then optimize and execute
such a query on the knowledge graph. To execute the query, the
graph database system may apply one of two main strategies,
GraphTraverse and Spalndex.

Fig. 1: Geographic Knowledge Graph

GraphTraverse first traverses the graph to find the matched
graph patterns and then evaluates the spatial predicates. Then,
the vertexes that cannot satisfy the spatial predicate (e.g.,
places within the extents of () are filtered out. Although
GraphTraverse answers queries correctly, it may possibly visit
many unnecessary vertexes/edges during the graph traversal.
Another approach, namely Spalndex, initially builds a spatial
index [1], [2], [4], e.g., R-Tree, over the spatial vertexes in
the graph. Neo4j is equipped with a spatial extension for
managing spatial data which supports basic spatial range,
nearest neighbor and distance queries. The query processor
in Spalndex runs in two steps: (1) Step I applies the index to
find all spatial vertexes that can satisfy the spatial predicate;
(2) Step II then traverses the graph starting from the set of
spatial vertexes. Step I may retrieve spatial vertexes that satisfy
the spatial predicate but do not match the query graph; That
will unnecessarily traverse graph paths. In conclusion, both
approaches exhibit unacceptable performance in applications
that need to query the geographic knowledge graph in real-
time or near real-time. Figure 2 shows the steps of answering
QI using the two strategies.

In this paper, we demonstrate a system, namely Spindra,
that provides efficient management of geographic knowledge
graphs. The system is equipped with a geographic knowl-
edge graph storage and indexing module that extends the
core functionality of a graph database system (i.e., Neo4j)
to efficiently store location facts and relationships among

Step 1:

Step 2:

Step 3:

Step 4:

(b) GraphTraverse

Fig. 2: Figure 2a depicts the steps the Spalndex approach takes to
process the example query given: Step 1: Search R-Tree to filter
out the objects that are not located within the region Q. R3 is
not accessed because it does not overlap with (). Step 2: Traverse
the graph from each spatial object to obtain the food type that the
restaurant has menu in. Step 3, 4: Search the graph by following
SubcategoryOf to find the Asian food vertex. Figure 2b shows how
GraphTraverse processes the same query: Step I: It first obtains
vertex that represents Asian food. Step 2: Search for all types which
are subcategory of Asian food. Step 3, 4: For each type, find all
restaurants that have menu in it and are located within Q.

them as vertexes and edges. The system also optimizes and
processes queries issued on the geographic knowledge graph.
We demonstrate the system using an interactive map-based
web interface that allows users to issue location-aware search
queries over the WikiData knowledge graph. The Front-end
will then visualize the returned geographic knowledge to the
user using OpenStreetMap.

II. SYSTEM OVERVIEW

Figure 3 shows the architecture of Spindra. Spindra consists
of three main components, Web Interface, Query Processing
Coordinator, and Data Store and Indexing. In the following,
we demonstrate each of the components.

A. Data Store and Indexing

The backend of the system stores the geographic knowledge
graph data and the index structure. The data source can
be existing well-known datasets, such as Foursquare, Yelp,
Wikipedia, etc. The graph data is managed by the graph
database. The information, like the location of an entity in
the graph is stored as the property of a vertex. Two categories
of indexes, SPA-Graph and spatial index are exploited by the
system to accelerate location-aware graph queries (will be
demonstrated later).

SPA-Graph is an augmented index structure on top of the
graph data. It keeps all the information of the graph data

L] o
Query Answer

[Graph+SpatialJoin]

Cypher Graph Query _

MATCH {f:Asian}<--[:SubcategoryOf*1..3]
--[:HasInMenu]<--{r:Restaurant}
WHERE Within (r, Q)

RETURN r ’

[Graph+KNN] [Graph+Range]

[Location-Aware Graph Query Optimizer J

[Location-Aware Graph Expansion Operator]

Geographic Knowledge Graph Query Processing

* 9

[Riso-Tree Index Structure] [R-Tree Index Structure]

[Spatial Indexing Properties in Graph Vertexes / Edges]

Geographic Knowledge Graph Storage and Indexing

FTTTN o

V. &
Foursquare yelp%s Ty {LOwaze
Fig. 3: System architecture overview

but augments it with some spatial information to make the
graph data spatial-aware. Figure 4 depicts the structure of
SPA-Graph. The spatial information stored on each vertex v
describes the spatial boundary of spatial vertexes that can be
reached from v through a specific number of hops. Such spatial
information has three categories:

o GeoB: An extra bit (i.e., boolean), called Spatial Reach-
ability Bit (abbr. GeoB) that determines whether v can
reach any spatial vertex (u € V) in the graph at a specific
hop number. GeoB of a vertex v is set to 1 (i.e., true) in
case v can reach at least one spatial vertex at hop k£ and
set to O (i.e., false) otherwise.

« RMBR: Reachability Minimum Bounding Rectangle
(abbr. RMBR) represents the minimum bounding rectan-
gle MBR(S) (represented by a top-left and a lower-right
corner point) that encloses a set of vertexes S where
S includes all spatial vertexes reachable from vertex v
through k hops.

o ReachGrid: A list of spatial grid cells, called the reach-
ability grid list (abbr. ReachGrid). Each grid cell C' in
ReachGrid(v) belongs to a hierarchical grid data structure
that splits the total physical space into r x r spatial grid
cells. Each spatial vertex u € Vg will be assigned a
unique cell ID (k € [1,7 x r]) in case u is located within
the extents of cell k, noted as Grid(u) = k. Each cell C' €
ReachGrid(v) contains at least one spatial vertex that is
reachable from v through exactly k& hops.

For a query with the spatial range predicate, SPA-Graph can
greatly reduce the graph search space due to its characteristic

1-Hop 2-Hop
GeoB: GeoB:
Asian: false Pizza: false
Med: false Panini: false
China: false Dimsum: false
Japan: false Udon: false
Italian: false Sushi: false
Mexican: false Salsa: false
Tofu: false
ReachGrid: Asian: false
Panini: {5, 9} Med: false
Pizza: {9}
Dimsum: {10} ReachGrid:
Udon: {11} Italian: {5, 9}
Sushi: {11} China: {10}
Salsa: {8} Japan: {11}
Tofu: {4} Mexican: {8}

Fig. 4: SPA-Graph

that for each vertex visited during the search, its future reach-
able spatial region can be predicted. If the reachable region of
that vertex does not overlap with the query range predicate,
the vertex can be safely pruned without really performing the
search.

In Figure 4, for instance, vertex Tofu has 1-hop spatial
reachable information of a list {4}. This means traversing
from vertex Tofu can only reach spatial vertexes within cell 4.
By exploiting this information, the GraphTraverse strategy in
2b can be improved because the search space after 7ofu can
be avoided (highlight in red rounded rectangle). The reason
is that cell 4 does not overlap with the query region Q). So
the algorithm knows further traversal will not lead to any
satisfying results and terminates the search at Tofu.

Another index structure category is spatial index. It includes
R-Tree and Riso-Tree together to accelerate the search. Riso-
Tree [5] is a graph-aware spatial index. Figure 5 demonstrates
its abstract structure. Riso-Tree takes R-Tree as its skeleton
but with graph information being attached to its nodes. For
each non-leaf node in Riso-Tree, it is stored with all the
paths connected to the spatial vertices belonging to this R-
Tree node. Each leaf node is stored with not only the paths
but also the vertices that can be reached through each path. In
R-Tree, the pruning only happens on nodes whose MBRs do
not overlap with the query region. By exploiting Riso-Tree, the
search can skip some nodes in the tree if any desired path is
not included in the current node’s graph information besides
pruning according to spatial overlap. So Riso-Tree provides
more pruning power compared to R-Tree.

Riso-Tree can improve the performance of Spalndex strat-
egy. In Figure 2a, s4 and s¢ lead to unnecessary search because
they are not related to Asian food. But the algorithm can only
drop s4 and sg after searching the graph. By utilizing the
label paths stored on R4 and RS5, the algorithm can directly
terminate the search here without triggering the traversal from
either s4 or sg.

B. Query Processing Coordinator

Basically, the Query Processing Coordinator stands as the
middle layer between users and the backend data store. It takes
location-aware graph queries (GraSp) from users and returns
the correct result.

R4

path

‘SI‘SZ‘SJ‘ ‘54‘55‘56‘ ‘57‘53‘59‘ ‘Sm‘su‘slz‘ ‘513‘514‘515‘

Fig. 5: Riso-Tree Structure

Typical queries in GraSp include GraSp-Range, GraSp-
KNN and GraSp-Join, etc. The example query mentioned
previously is one GraSp-Range query. It has a graph constraint
part and a range constraint part. GraSp-KNN asks for the
top-K closest spatial objects which satisfy a given graph
pattern from a given location. For instance, to find 10 closest
restaurants that have menu in Asian food. GraSp-Join is a
spatial join query with graph constraints. An example for
GraSp-Join can be to search for all the restaurants that have
menu in Asian food and are close to a resort (e.g., the distance
less than 1 km).

The Location-Aware Graph Query Optimizer analyzes the
given query and decides the best execution plan. The plan can
be either GraphTraverse, Spalndex or Compound strategy but
with new operators.

Basically, two existing operators will be replaced. One is
the spatial index search operator used in Step I of Spalndex
strategy. It will be replaced with a graph-aware operator, which
considers the paths in the query and searches Riso-Tree instead
to reduce search space. Another one is the EXPAND operator
used to expand from a vertex to fetch all its neighbors. The
optimizer will replace it with GEOEXPAND. GEOEXPAND
considers the information stored on SPA-Graph and expands
a vertex only if its spatial reachable information shows the
vertex can possibly reach the query region after the EXPAND.
After the plan rewriting, the execution plan will be executed.

III. SCENARIO

In this section, we demonstrate real user scenarios by
using Spindra. The WikiData graph dataset [7] is used as the
data source. WikiData is a knowledge graph extracted from
Wikipedia. It contains real-world objects and their relation-
ships. The data is loaded into Neo4j graph database system.
The storage backend, including SPA-Graph and Riso-Tree, are
constructed after the data is loaded.

A real scenario can be described as follows: An ICDE
2019 participant plans to explore Macau. He/she is interested
in visiting some museums in Macau. A query to search for
nearby places that are InstanceOf MUSEUM is helpful in
this case. Figure 6 shows the interface for managing the
data in the backend data store. It can answer Cypher queries
and visualize the graph data and the index information. The
figure shows an overview of the related entities for the query
in the dataset. Blue circles represent PLACE entities. They
are InstanceOf different categories and categories can be

e P NodelndexSeekByRange
122 db hits

121 rows

D Filter
121 db hits

92 rows

» Expand(All)
185 db hits

93 rows

» Expand(All)
299 db hits

206 rows

> Filter
218 db hits.

12 rows

o o - =

Fig. 6: Backend Data View Interface

SubclassOf other categories. Normally, the query should only
search for museums. However, it might happen that there
is no museum nearby or the places whose categories are
related to museum (e.g., amusement park) can be accepted
and recommended as alternatives to increase the richness of
the result. So the system will trigger a search to find all the
places that are nearby and their categories are SubclassOf
tourist attraction.

Figure 6 also shows the execution plan of the query by
directly running a Cypher query in Neo4j. Because of the
existence of the spatial index, the spatial filtering will take be
performed. The first two boxes in the plan reflect such a step.
Such step incurs 243 db hits and 92 spatial objects are within
the search region. Then for each spatial object, the executor
performs two Expand(All) operators. The first Expand(All)
operator expands through the edge InstanceOf and fetches all
nodes connected by such edge type. The second Expand(All)
expands each node obtained from the previous step through
edge SubclassOf. The two Expand(All) operators increase the
number of rows from 92 to 206 because each node can have
many neighbors. The final step is to check whether the current
node is amusement park. At the last box in the execution
plan, the number of rows decreases from 206 to 12 after the
Filter operation. It is because many subgraphs do not contain
a node of rourist attraction. So even 92 spatial entities are
within the query region, only 12 of them can satisfy the graph
constraint of being InstanceOf a category that is SubclassOf
tourist attraction. In other words, many nodes visited by the
Expand(All) operator are unnecessary.

When this query is issued in Spindra, the spatial filter phase
will also be performed at first. But with the help of Riso-Tree,
not all spatial objects within the query region are promising.
Those spatial objects that do not have the required label paths
will not be executed in the next step. So there will be far less
than 92 rows. As a result, the execution time will be reduced.

Figure 7 shows a web interface which visualizes all the
satisfying spatial objects in a map view. We can observe that
not only museums but also some other spatial entities, such
as Macau Tower, which is a perfect place for tourism are
returned. In the web interface, users can move the searching

PEESN B Peninsula’de Macau

= ER3IMacau

Fig. 7: Query Result Map View

60 - |
g 10t 12
£ -8- EXPAND £ 40 4 Spalndex |
S —+ GEOEXPAND | T —+RisoTree
&10 | J/ 1& 20 ,
- 1 1 1 or ! | L . h
107° 104 1073 102 10-6 10-° 101 108
Query Range Query Range

(a) GEOEXPAND VS EXPAND (b) Riso-Tree VS R-Tree

Fig. 8: GraSp-Range query response time

center by dragging the red marker and change the search
radius. The user can also change the search topic to Hotel,
University, etc.

In order to test the influence of the query range selectivity
in GraSp-Range, we run further experiments on Foursquare
dataset. We vary the spatial selectivity, which is measured by
the ratio of the number of spatial objects in the query region
to the total number of spatial objects in the dataset. Figure
8a shows that by using the replaced GEOEXPAND operator,
the query performance can be improved because spatially-
unpromising subgraphs are pruned. Figure 8b shows that by
using Riso-Tree, the execution time can be reduced by two
orders of magnitude. It also reveals that the Riso-Tree can
become especially effective when the selectivity is not too
high.

REFERENCES

[1] BECKMANN, N., KRIEGEL, H., SCHNEIDER, R., AND SEEGER, B. The
r*-tree: An efficient and robust access method for points and rectangles.
In SIGMOD (1990), pp. 322-331.

[2] GUTTMAN, A. R-Trees: A Dynamic Index Structure For Spatial Search-
ing. In SIGMOD (1984).

[3] Neo4j graph database. https://neo4j.com/.

[4] SAMET, H. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006.

[5] SUN, Y., AND SARWAT, M. A generic database indexing framework
for large-scale geographic knowledge graphs. In ACM SIGSPATIAL GIS
(2018), pp. 289-298.

[6] Titan distributed graph database. http://titan.thinkaurelius.com/.

[71 VRANDECIC, D., AND KROTZSCH, M. Wikidata: A free collaborative
knowledgebase. Commun. ACM 57, 10 (Sept. 2014), 78-85.

