
Two Birds, One Stone: A Fast, yet Lightweight, Indexing
Scheme for Modern Database Systems

1Jia Yu 2Mohamed Sarwat

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, 699 S. Mill Avenue, Tempe, AZ

1jiayu2@asu.edu, 2msarwat@asu.edu

ABSTRACT

Classic database indexes (e.g., B+-Tree), though speed up
queries, suffer from two main drawbacks: (1) An index usu-
ally yields 5% to 15% additional storage overhead which re-
sults in non-ignorable dollar cost in big data scenarios espe-
cially when deployed on modern storage devices. (2) Main-
taining an index incurs high latency because the DBMS has
to locate and update those index pages affected by the un-
derlying table changes. This paper proposes Hippo a fast,
yet scalable, database indexing approach. It significantly
shrinks the index storage and mitigates maintenance over-
head without compromising much on the query execution
performance. Hippo stores disk page ranges instead of tuple
pointers in the indexed table to reduce the storage space oc-
cupied by the index. It maintains simplified histograms that
represent the data distribution and adopts a page group-
ing technique that groups contiguous pages into page ranges
based on the similarity of their index key attribute distri-
butions. When a query is issued, Hippo leverages the page
ranges and histogram-based page summaries to recognize
those pages such that their tuples are guaranteed not to sat-
isfy the query predicates and inspects the remaining pages.
Experiments based on real and synthetic datasets show that
Hippo occupies up to two orders of magnitude less storage
space than that of the B+-Tree while still achieving compa-
rable query execution performance to that of the B+-Tree
for 0.1% - 1% selectivity factors. Also, the experiments show
that Hippo outperforms BRIN (Block Range Index) in exe-
cuting queries with various selectivity factors. Furthermore,
Hippo achieves up to three orders of magnitude less main-
tenance overhead and up to an order of magnitude higher
throughput (for hybrid query/update workloads) than its
counterparts.

1. INTRODUCTION
A database system (DBMS) often employs an index struc-

ture, e.g., B+-Tree, to speed up queries issued on the indexed

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

Table 1: Index overhead and storage dollar cost

(a) B+-Tree overhead

TPC-H Index size Initialization time Insertion time

2 GB 0.25 GB 30 sec 10 sec
20 GB 2.51 GB 500 sec 1180 sec
200 GB 25 GB 8000 sec 42000 sec

(b) Storage dollar cost

HDD EnterpriseHDD SSD EnterpriseSSD

0.04 $/GB 0.1 $/GB 0.5 $/GB 1.4 $/GB

table. Even though classic database indexes improve the
query response time, they face the following challenges:

• Indexing Overhead: A database index usually
yields 5% to 15% additional storage overhead. Al-
though the overhead may not seem too high in small
databases, it results in non-ignorable dollar cost in big
data scenarios. Table 1a depicts the storage overhead
of a B+-Tree created on the Lineitem table from the
TPC-H benchmark [6] (database size varies from 2, 20
and 200 GB). Moreover, the dollar cost increases dra-
matically when the DBMS is deployed on modern stor-
age devices (e.g., Solid State Drives and Non-Volatile
Memory) because they are still more than an order of
magnitude expensive than Hard Disk Drives (HDDs).
Table 1b lists the dollar cost per storage unit collected
from Amazon.com and NewEgg.com. In addition, ini-
tializing an index may be a time consuming process
especially when the index is created on a large table
(see Table 1a).

• Maintenance Overhead: A DBMS must update the
index after inserting (deleting) tuples into (from) the
underlying table. Maintaining a database index in-
curs high latency because the DBMS has to locate and
update those index entries affected by the underlying
table changes. For instance, maintaining a B+-Tree
searches the tree structure and perhaps performs a set
of tree nodes splitting or merging operations. That
requires plenty of disk I/O operations and hence en-
cumbers the time performance of the entire DBMS in
big data scenarios. Table 1a shows the B+ Tree in-
sertion overhead (insert 0.1% records) for the TPC-H
Lineitem table.

Existing approaches that tackle one or more of the afore-
mentioned challenges are classified as follows: (1) Com-
pressed indexes: Compressed B+-Tree approaches [8, 9, 21]
reduce the storage overhead but compromise on the query
performance due to the additional compression and decom-
pression time. Compressed bitmap indexes also reduce index
storage overhead [10, 12, 16] but they mainly suit low cardi-
nality attributes which are quite rare. For high cardinality
attributes, the storage overhead of compressed bitmap in-
dexes significantly increases [19]. (2) Approximate indexes:
An approximate index [4, 11, 14] trades query accuracy for
storage to produce smaller, yet fast, index structures. Even
though approximate indexes may shrink the storage size,
users cannot rely on their un-guaranteed query accuracy in
many accuracy-sensitive application scenarios like banking
systems or user archive systems. (3) Sparse indexes: A
sparse index [5, 13, 17, 18] only stores pointers which re-
fer to disk pages and value ranges (min and max values)
in each page so that it can save indexing and maintenance
overhead. It is generally built on ordered attributes. For
a posed query, it finds value ranges which cover or overlap
the query predicate and then rapidly inspects the associated
few parent table pages one by one for retrieving truly qual-
ified tuples. However, for unordered attributes which are
much more common, sparse indexes compromise too much
on query performance because they find numerous qualified
value ranges and have to inspect a large number of pages.

This paper proposes Hippo a fast, yet scalable, sparse
database indexing approach. In contrast to existing tree in-
dex structures, Hippo stores disk page ranges (each works
as a pointer of one or many pages) instead of tuple pointers
in the indexed table to reduce the storage space occupied by
the index. Unlike existing approximate indexing methods,
Hippo guarantees the query result accuracy by inspecting
possible qualified pages and only emitting those tuples that
satisfy the query predicate. As opposed to existing sparse
indexes, Hippo maintains simplified histograms that repre-
sent the data distribution for pages no matter how skew it is,
as the summaries for these pages in each page range. Since
Hippo relies on histograms already created and maintained
by almost every existing DBMS (e.g., PostgreSQL), the sys-
tem does not exhibit a major additional overhead to create
the index. Hippo also adopts a page grouping technique
that groups contiguous pages into page ranges based on the
similarity of their index key attribute distributions. When a
query is issued on the indexed database table, Hippo lever-
ages the page ranges and histogram-based page summaries
to recognize those pages for which the internal tuples are
guaranteed not to satisfy the query predicates and inspects
the remaining pages. Thus Hippo achieves competitive per-
formance on common range queries without compromising
the accuracy. For data insertion and deletion, Hippo dis-
penses with the numerous disk operations by rapidly locat-
ing the affected index entries. Hippo also adaptively decides
whether to adopt an eager or lazy index maintenance strat-
egy to mitigate the maintenance overhead while ensuring
future queries are answered correctly.

We implemented a prototype of Hippo inside PostgreSQL
9.51. Experiments based on the TPC-H benchmark as well
as real and synthetic datasets show that Hippo occupies up
to two orders of magnitude less storage space than that of

1https://github.com/DataSystemsLab/hippo-postgresql

Figure 1: Initialize and search Hippo on age table

the B+-Tree while still achieving comparable query execu-
tion performance to that of the B+-Tree for 0.1% - 1% se-
lectivity factors. Also, the experiments show that Hippo
outperforms BRIN, though occupies more storage space, in
executing queries with various selectivity factors. Further-
more, Hippo achieves up to three orders of magnitude less
maintenance overhead than its counterparts, i.e., B+-Tree
and BRIN. Most importantly, Hippo exhibits up to an or-
der of magnitude higher throughput (measured in terms of
the number of tuples processed per second) than both BRIN
and B+-Tree for hybrid query/update workloads.

The rest of the paper is structured as follows: In Section 2,
we explain the key idea behind Hippo and describe the in-
dex structure. We explain how Hippo searches the index,
builds the index from scratch, and maintains it efficiently in
Sections 3, 4 and 5. In Section 6, we deduce a cost model
for Hippo. Extensive experimental evaluation is presented
in Section 7. We summarize a variety of related indexing
approaches in Section 8. Finally, Section 9 concludes the
paper and highlights possible future directions.

2. HIPPO OVERVIEW
This section gives an overview of Hippo. Figure 1 depicts

a running example that describes the index initialization
(left part of the figure) and search (right part of the figure)
processes in Hippo. The main challenges of designing an in-
dex are to reduce the indexing overhead in terms of storage
and initialization time as well as speed up the index main-
tenance while still keeping competitive query performance.
To achieve that, an index should possess the following two
main properties: (1) Less Index Entries: For better storage
space utilization, an index should determine and only store
the most representative index entries that summarize the
key attribute. Keeping too many index entries inevitably
results in high storage overhead as well as high initialization
time. (2) Index Entries Independence: The index entries

1

2

.

.

.

n

.

.

.

.

.

.

Summarized
Page Range

Histogram-based
Summary

In
de

x
 E

nt
rie

s
S

or
te

d
Li

st Bit 1 Bit 2 Bit b… StartPageID EndPageID

Bit 1 Bit 2 Bit b… StartPageID EndPageID

Bit 1 Bit 2 Bit b… StartPageID EndPageID

Figure 2: Hippo Index Structure

should be independent from each other. In other words, the
range of values that each index entry represents should have
minimal overlap with other index entries. Interdependence
among index entries, like that in a B+-Tree, results in over-
lapped tree nodes. That may lead to more I/O operations
during query processing and several cascaded updates dur-
ing index maintenance.

Data Structure. Figure 2 depicts the index structure.
To create an index, Hippo scans the indexed table and gener-
ates histogram-based summaries for a set of disk page based
on the index key attribute. These summaries are then stored
by Hippo along with page ranges they summarize. As shown
in Figure 2, Hippo consists of n index entries such that each
entry consists of the following two components:

• Summarized Page Range: represents the IDs of
the first and last pages summarized (i.e., StartPageID
and EndPageID in Figure 2) by the index entry. The
DBMS can load particular pages into buffer accord-
ing to their IDs. Hippo summarizes more than one
physically contiguous pages to reduce the overall in-
dex size, e.g., Page 1 - 10, 11 - 25, 26 - 30 in Figure 1.
The number of summarized pages in each index entry
varies. Hippo adopts a page grouping technique that
groups contiguous pages into page ranges based on the
similarity of their index attribute distributions, using
the partial histogram density (explained in Section 4).

• Histogram-based Summary: A bitmap that rep-
resents a subset of the complete height balanced
histogram buckets (maintained by the underlying
DBMS), aka. partial histogram. Each bucket, if ex-
ists, indicates that at least one of the tuples of this
bucket exists in the summarized pages. Each partial
histogram represents the distribution of the data in
the summarized contiguous pages. Since each bucket
of a height balanced histogram roughly contains the
same number of tuples, each of them has the same
probability to be hit by a random tuple from the ta-
ble. Hippo leverages this feature to handle a variety
of data distributions, e.g., uniform, skewed. To reduce
the storage footprint, only bucket IDs are kept in par-
tial histograms and partial histograms are stored in a
compressed bitmap format. For instance, the partial
histogram of the first index entry in Figure 1 is 01110.

Main idea. Hippo solves the aforementioned challenges
as follows: (1) Each index entry summarizes many pages and

Algorithm 1: Hippo index search

Data: A given query predicate Q
Result: A set of qualified tuples R

1 // Step I: Scanning Index Entries;
2 Set of Possible Qualified Pages P = φ;
3 foreach Index Entry in Hippo do
4 if the partial histogram has joint buckets with Q then
5 Add the IDs of pages indexed by the entry to P ;
6 end
7 end
8 // Step II: Filtering False Positive Pages;
9 Set of Qualified Tuples R = φ;

10 foreach Page ID ∈ P do
11 Retrieve the corresponding page p;
12 foreach tuple t ∈ p do
13 if t satisfies the query predicate then
14 Add t to R;
15 end
16 end
17 end
18 return R;

only stores two page IDs and a compressed bitmap.(2) Each
page of the parent table is only summarized by one Hippo
index entry. Hence, any updates that occur in a certain
page only affect a single independent index entry. Finally,
during a query, pages whose partial histograms do not have
desired buckets are guaranteed not to satisfy certain query
predicates and marked as false positives. Thus Hippo only
inspects other pages that probably satisfies the query pred-
icate and achieves competitive query performance.

3. INDEX SEARCH
The search algorithm takes as input a query predicate

and returns a set of qualified tuples. As explained in Sec-
tion 2, partial histograms are stored in a bitmap format.
Hence, any query predicates for a particular attribute are
broken down into atomic units: equality query predicate
and range query predicate. Each unit predicate is compared
with the buckets of the complete height balanced histogram
(discussed in Section 4). A bucket is hit by a predicate if
the predicate fully contains, overlaps, or is fully contained
by the bucket. Each unit predicate can hit at least one or
more buckets. Afterwards, the query predicate is converted
to a bitmap. Each bit in this bitmap reflects whether the
bucket that has the corresponding ID is hit (1) or not (0).
Thus, the corresponding bits of all hit buckets are set to 1.

The search algorithm then runs in two main steps (see
pseudo code in Algorithm 1): (1) Step I: Scanning Hippo
index entries and (2) Step II: Filtering false positive pages.
The search process leverages the index structure to avoid
unnecessary page inspection so that Hippo can achieve com-
petitive query performance.

3.1 Step I: Scanning index entries
Step I finds possible qualified disk pages, which may con-

tain tuples that satisfy the query predicate. Since it is quite
possible that some pages may not contain any qualified tu-
ple especially for highly selective queries, Hippo prunes these
index entries (that index these unqualified pages) that defi-
nitely do not contain any qualified pages.

In this step, the search algorithm scans the Hippo index.
For each index entry, the algorithm retrieves the partial his-

Figure 3: Scan index entries

togram which summarizes the data distribution in the pages
indexed by such entry. The algorithm then checks whether
the input query predicate has one or more joint (i.e. over-
lapped) buckets with the partial histogram. To efficiently
process that, Hippo performs a nested loop between each
partial histogram and the input query predicate to find the
joint buckets. Since both the partial histograms and the
query predicate are in a bitmap format, Hippo accelerates
the nested loop by performing a bitwise ’AND’ of the bytes
from both sides, aka. bit-level parallelism. In case bitwise
’AND’ing the two bytes returns 0, that means there exist no
joint buckets between the query predicate and the partial
histogram. Entries with partial histograms that do not con-
tain the hit buckets (i.e., the corresponding bits are 0) are
guaranteed not to contain any qualified disk pages. Hence,
Hippo disqualifies these pages and excludes them from fur-
ther processing. On the other hand, index entries with par-
tial histograms that contain at least one of the hit buckets,
i.e., the corresponding bits are 1, may or may not have qual-
ified pages. Hippo deems these pages as possible qualified
pages and hence forwards their IDs to the next step.

Figure 3 visualizes the procedure of scanning index entries
according to their partial histograms. In Figure 3, buckets
hit by the query predicates and the partial histogram are
represented in a bitmap format. According to this figure,
the partial histogram misses a query predicate if the high-
lighted area of the predicate falls into the blank area of the
partial histogram, whereas a partial histogram is selected if
the predicate does not fall completely into the blank area of
the histogram.

3.2 Step II: Filtering false positive pages
The previous step identifies many unqualified disk pages

that are guaranteed not to satisfy the query predicate. How-
ever, not all unqualified pages can be detected by the pre-
vious step. The set of possible qualified pages, retrieved
from Step I, may still contain false positives (defined be-
low). During the search process, Hippo considers a possible
qualified page p a false positive if and only if (1) p lies in
the page range summarized by a qualified index entry from
Step I and (2) p does not contain any tuple that satisfies
the input query predicate. To filter out false positive pages,
Step II inspects every tuple in each possible qualified page,
retrieves those tuples that satisfy the query predicate, and
finally returns those tuples as the answer.

Step II takes as input the set of possible qualified pages
IDs, formatted in a separate bitmap. Each bit in this bitmap
is mapped to the page at the same position in the original
table indexed by Hippo. For each page ID, Hippo retrieves
the corresponding page from disk and checks each tuple in
that page against the query predicate. In case, a tuple sat-
isfies the query predicate, the algorithm adds this tuple to
the final result set. The right part of Figure 1 describes how
to search the index using an input query predicate. First,

Hippo finds that query predicate age = 55 hits bucket 3.
Since the first one of the three partial histograms nicely
contains bucket 3, only the disk pages 1 - 10 are selected as
possible qualified pages and hence sent for further inspec-
tion in step II. It is also worth noting that these partial
histograms summarize different number of pages.

4. INDEX INITIALIZATION
To create an index, Hippo takes as input a database ta-

ble and the key attribute (i.e., column) in this table. Hippo
then performs two main steps (See pseudo code in Algo-
rithm 2) to initialize itself: (1) Generate partial histograms
(Section 4.1), and (2) Group similar pages into page ranges
(Section 4.2), described as follows.

4.1 Generate partial histograms
To initialize the index, Hippo leverages a complete height

balanced histogram, maintained by most DBMSs, that rep-
resents the data distribution. A histogram consists of a set
of buckets such that each bucket represents the count of tu-
ples with attribute value within the bucket range. A partial
histogram only contains a subset of the buckets that be-
longs to the height balanced histogram. The resolution of
the complete histogram (H) is defined as the total number
of buckets that belongs to this histogram. A histogram will
obviously have larger physical storage size if it has higher
resolution. The histogram resolution also affects the query
response time (see Section 6 for further details).

Hippo stores a partial histogram for each index entry to
represent the data distribution of tuples in one or many disk
pages summarized by the entry. Partial histograms allow
Hippo to early identify unqualified disk pages and avoid un-
necessary page inspection. To generate partial histograms,
Hippo scans all disk pages of the indexed table. For each
page, the algorithm retrieves each tuple, the key attribute
value is extracted from each tuple and then compared to
the complete histogram using binary search. Buckets hit by
tuples are kept for this page and then compose a partial his-
togram. A partial histogram only contains distinct buckets.
For instance, there is a group of age attribute values like
the first entry of Hippo given in Figure 1: 21, 22, 55, 75,
77. Bucket 2 is hit by 21 and 22, bucket 3 is hit by 55 and
bucket 4 is hit by 77 (see partial histogram 1 in Figure 1).

Hippo shrinks the storage footprint of partial histograms
by dropping all bucket value ranges and only keeping bucket
IDs. Actually, as mentioned in Section 2, dropping value
range information does not have much negative impact on
the index search. To further shrink the storage footprint,
Hippo stores the histogram bucks IDs in bitmap type for-
mat instead of using an integer type (4 bytes or more). Each
partial histogram is stored as a bitmap such that each bit
represents a bucket at the same position in a complete his-
togram. Bit value 1 means the associated bucket is hit and
stored in this partial histogram while 0 means the associ-
ated bucket is not included. The partial histogram can also
be compressed by any existing bitmap compression tech-
nique. The time for compressing and decompressing partial
histograms is ignorable compared to that of inspecting pos-
sible qualified pages.

4.2 Group pages into page ranges
Generating a partial histogram for each disk page may

lead to very high storage overhead. Grouping contiguous

Algorithm 2: Hippo index initialization

Data: Pages of a parent table
Result: Hippo index

1 Create a working partial histogram (in bitmap format);
2 Set StartPage = 1 and EndPage = 1;
3 foreach page do
4 Find distinct buckets hit by its tuples;
5 Set associated bits to 1 in the partial histogram;
6 if the working partial histogram density > threshold

then
7 Store the partial histogram and the page range

(StartPage and EndPage) as an index entry;
8 Create a new working partial histogram;
9 StartPage = EndPage + 1;

10 EndPage = StartPage;
11 else
12 EndPage = EndPage + 1;
13 end
14 end

pages and merging their partial histograms into a larger
partial histogram (in other words, summarizing more pages
within one partial histogram) can tremendously reduce the
storage overhead. However, that does not mean that all
pages should be grouped together and summarized by a sin-
gle merged partial histogram. The more pages are sum-
marized, the more buckets the partial histogram contains.
If the partial histogram becomes a complete histogram and
covers any possible query predicates, it is unable to filter the
false positives and the disk pages summarized by this partial
histogram will be always treated as possible qualified pages.

One strategy is to group a fixed number of contiguous
pages per partial histogram. Yet, this strategy is not effi-
cient when a set of contiguous pages have much more similar
data distribution than other areas. To remedy that, Hippo
dynamically groups more contiguous pages under the same
index entry when they possess similar data distribution and
less contiguous pages if they do not show similar data distri-
bution. To take the page grouping decision, Hippo leverages
a parameter called partial histogram density. The density of
a partial histogram is defined as the ratio of complete his-
togram buckets that belongs to the partial histogram. Obvi-
ously, the complete histogram has a density value of 1. The
definition can be formalized as follows:

Partial histogram density (D) =
Bucketspartial histogram

Bucketscomplete histogram

The density exhibits an important phenomenon that, for
a set of contiguous disk pages, their merged partial his-
togram density will be very low if these pages are very sim-
ilar, and vice versa. Therefore, a partial histogram with
a certain density may summarize more pages if these con-
tiguous pages have similar data, vice versa. Making use of
this phenomenon enables Hippo to dynamically group pages
and merge partial histograms into one. In addition, it is un-
derstandable that a lower density partial histogram (sum-
marizes less pages) has the high probability to be excluded
from further processing.

Users can easily set the same density value for all par-
tial histograms as a threshold. Hippo can automatically
decide how many pages each partial histogram should sum-
marize. Algorithm 2 depicts how Hippo initializes the index
and summarizes more pages within a partial histogram by

Algorithm 3: Update Hippo for data insertion

Data: A newly inserted tuple that belongs to Page a
Result: Updated Hippo

1 Find the bucket hit by the inserted tuple;
2 Locate a Hippo index entry which summarizes Page a;
3 if an index entry is located
4 then
5 Fetch the located Hippo index entry;
6 Update the retrieved entry if necessary;
7 else
8 Retrieve the entry that summarizes the last page;
9 if the partial histogram density < threshold then

10 Summarize Page a into the retrieved index entry;
11 else
12 Summarize Page a into a new index entry;
13 end
14 end

means of the partial histogram density. The basic idea is
that new pages will not be summarized into a partial his-
togram if its density is larger than the threshold and a new
partial histogram will be created for the following pages.

The left part of Figure 1 depicts how the initialization
process for an index create on the age attribute. In the
example, the partial histogram density is set to 0.6. All
tuples are compared with the complete histogram and IDs
of distinct buckets hit by all tuples are generated as partial
histograms along with their page range. So far, as Figure 1
and 2 shows, each index entry has the following parameters:
a partial histogram in compressed bitmap format and two
integers that stand for the first and last pages summarized
by this histogram (summarized page range). Each entry is
then serialized and stored on disk.

5. INDEX MAINTENANCE
Inserting (deleting) tuples into (from) the table requires

maintaining the index. That is necessary to ensure that
the DBMS can retrieve the correct set of tuples that match
the query predicate. However, the overhead introduced by
frequently maintaining the index may preclude system scal-
ability. This section explains how Hippo handles updates.

5.1 Data insertion
Hippo adopts an eager update strategy when a new tuple

is inserted to the indexed table. An eager strategy instantly
updates or checks the index at least when a new tuple is
inserted. Otherwise, all subsequent queries might miss the
newly inserted tuple. Data insertion may change the physi-
cal structure of a table (i.e., heap file). The new tuple may
belong to any pages of the indexed table. The insertion
procedure (See Algorithm 3) performs the following steps:
(I) Locate the affected index entry, and (II) Update the in-
dex entry if necessary.

Step I: Locate the affected index entry: After
retrieving the complete histogram, the algorithm checks
whether a newly inserted tuple hits one or more of the his-
togram buckets. The newly inserted tuple belongs to a disk
page. This page may be a new page has not been sum-
marized by any partial histograms before or an old page
which has been summarized. However, because the num-
bers of pages summarized by each histogram are different,
searching Hippo index entries to find the one contains this

target page is inevitable. From the perspective of disk stor-
age, in a Hippo, all partial histograms are stored on disk in
a serialized format. It will be extremely time-consuming if
every entry is retrieved from disk, de-serialized and checked
against the target page. The algorithm then searches the
index entries by means of the index entries sorted list ex-
plained in Section 5.3.

Step II: Update the index entry: In case the inserted
tuple belongs to a new page and the partial histogram den-
sity which summarizes the last disk page is smaller than the
density threshold set by the system user, the algorithm sum-
marizes the new page into this partial histogram in the last
index entry. Otherwise, the algorithm creates a new partial
histogram to summarize this page and stores them in a new
index entry. In case a new tuple belongs to a page that is
already summarized by Hippo, the partial histogram in the
associated index entry will be updated if the inserted tuple
hits a new bucket.

It is worth noting that: (1) Since the compressed bitmaps
of partial histograms may have different size, the updated
index entry may not fit the space left at the old location.
Thus the updated one may be put at the end of Hippo.
(2) After some changes (replacing old or creating new index
entry) in Hippo, the corresponding position of the sorted list
might need to be updated.

The I/O cost incurred by eagerly updating the index due
to a newly inserted tuple is equal to log(# of index entries)
+ 4. Locating the affected index entry yields log(# of in-
dex entries) I/Os, whereas Step II consumes 4 I/Os to up-
date the index entry. Section 6 gives more details on how to
estimate the number of index entries in Hippo.

5.2 Data deletion
The eager update strategy is deemed necessary for data

insertion to ensure the correctness of future queries issued
on the indexed table. However, the eager update strategy
is not necessary after deleting data from the table. That is
due to the fact that Hippo inspects possible qualified pages
during the index search process and pages with qualified
deleted tuples might be still marked as possible qualified
page in the first phase of the search algorithm. Even if these
pages contain deleted tuples, such pages will be discarded
during the ”Step II: filtering false positive pages” phase of
the search algorithm. However, not maintaining the index
at all may introduce a lot of false positives during the search
process, which may takes its toll on the query repossess time.

Hippo still ensures the correctness of queries even if it
does not update the index at all after deleting tuples from a
table. To achieve that, Hippo adopts a periodic lazy update
strategy for data deletion. The deletion strategy maintains
the index after a bulk of delete operations are performed to
the indexed table. In such case, Hippo traverses all index
entries. For each index entry, the system inspects the header
of each summarized page for seeking notes made by DBMSs
(e.g., PostgreSQL makes notes in page headers if data is
removed from pages). Hippo re-summarizes the entire index
entry instantly within the original page range if data deletion
on one page is detected. The re-summarization follows the
same steps in Section 4.

5.3 Index Entries Sorted List
When a new tuple is inserted, Hippo executes a fast binary

search (according to the page IDs) to locate the affected

Page range Partial histogram Internal data
1 - 10 2,3,4 21,22,55,75,77

Blank space
26 - 30 1,2,5 11,12,25,101,110…

Updated Hippo

Pointer

…
11 – 25 1,2,4,5 13,23,24,62,91,92

Move

Sorted list

Page #
Low

High

Figure 4: Hippo Index Entries Sorted List

index entry and then updates it. Since the index entries are
not guaranteed to be sorted based on the page IDs (noted in
data insertion section), an auxiliary structure for recording
the sorted order is introduced to Hippo.

The sorted list is initialized after all steps in Section 4
with the original order of index entries and put at the first
several index pages of Hippo. During the entire Hippo life
time, the sorted list maintains a list of pointers of Hippo
index entries in the ascending order of page IDs. Actually
each pointer represents the fixed size physical address of
an index entry and these addresses can be used to retrieve
index entries directly. That way, the premise of a binary
search has been satisfied. Figure 4 depicts the Hippo index
entries sorted list. Index entry 2 in Figure 1 has a new
bucket ID 1 due to a newly inserted tuple in its internal
data and hence this entry becomes the last index entry in
Figure 4. The sorted list is still able to record the ascending
order and help Hippo to perform a binary search on the
index entries. In addition, such sorted list leads to slight
additional maintenance overhead: Some index updates need
to modify the affected pointers in the sorted list to reflect
the new physical addresses.

6. COST MODEL
This section deduces a cost model for Hippo. Table 2

summarizes the main notations. Given a database table
R with a number of tuples Card and average number of
tuples per disk page pageCard, a user may create a Hippo
index on attribute (i.e., column) ai of R. Let the complete
histogram resolution be H (it has H buckets in total) and
the partial histogram density beD. Assume that each Hippo
index entry on average summarizes P data pages and T
tuples. Queries executed against the index have an average
selectivity factor SF . To calculate the query I/O cost, we
need to consider: (1) I/Oscanning index represents the cost of
scanning the index entries (Phase I in the search algorithm)
and (2) I/Ofiltering false positives represents the I/O cost of
filtering false positive pages (Phase II).

Estimating the number of index entries. Since all
index entries are scanned in the first phase, the I/O cost
of this phase is equal to the total pages the index spans
on disk (I/Oscanning index=

of index entries
pageCard

). To estimate
the number of Hippo index entries, we have to estimate how
many disk pages (P) are summarized by a partial histogram
in general, or how many tuples (T) are checked against the
complete histogram to generate a partial histogram. This
problem is very similar to the Coupon Collector’s Prob-
lem[7]. This problem can be described like that: ”A vend-
ing machine sells H types of coupons (a complete histogram
with H buckets). Alice is purchasing coupons from this ma-
chine. Each time (each tuple) she can get a random type

Table 2: Notations used in Cost Estimation

Term Definition

H
Complete histogram resolution which means the
number of buckets in this complete histogram

pageH Average number of histogram buckets hit by a page

D
Partial histogram density, which is an user supplied
parameter

P
Average number of pages summarized by a partial
histogram for a certain attribute

T
Average number of tuples summarized by a partial
histogram for a certain attribute

Card Total number of tuples of the indexed table

pageCard Average number of tuples per page

SF The selectivity factor of the issued query

coupon (a bucket) but she might already have a same one.
Alice keeps purchasing until she gets D∗H types of coupons
(distinct buckets). How many times (T) does she need to
purchase?” Therefore, the expectation of T is determined by
the following equation:

T = H×(
1

H
+

1

H − 1
+ ...+

1

H −D×H + 1
) (1)

= H×

D×H−1
∑

i=0

1

H − i
(2)

Note that the partial histogram density D ∈ [pageH
H

, 1].
That means the global density should be larger than the
ratio of average hit histogram buckets per page to all his-
togram buckets because page is the minimum unit when
grouping pages based on density. Estimating pageH is also
a variant of Coupon Collector’s Problem: How many types
of coupons (distinct buckets) will Alice get if she purchases
pageCard coupons (tuples)? Given Equation 2, the mathe-
matical expectation of pageH can be easily found as follows:

pageH = H×(1− (1−
1

H
)pageCard) (3)

The number of Hippo index entries is equivalent to the
total number of tuples in the indexed table divided by the
average number of tuples summarized by each index entry,
i.e., Card

T
. Hence, the number of index entries is given in

Equation 4. The index size is equal to the product of the
number of index entries and the size of a single entry. The
size of each index entry is roughly equal to each partial his-
togram size.

of Index entries = Card/(H×

D×H−1
∑

i=0

1

H − i
) (4)

Given Equation 4, we observe the following: (1) For a
certain H , the higher the value of D, the less Hippo index
entries there exist. (2) For a certainD, the higherH there is,
the less Hippo index entries there are. Meanwhile, the size of
each index entry increases with the growth of the complete
histogram resolution. The final I/O cost of scanning the
index entries is given in Equation 5.

I/Oscanning index =
Card

H×pageCard
×(

D×H−1
∑

i=0

1

H − i
)−1 (5)

Estimating the number of read data pages. Data
pages summarized by each index entry are likely to be
checked in the second phase of the search algorithm, filter-
ing false positive pages, if their associated partial histogram
has joint buckets with the query predicate. Determining
the probability of having joint buckets contributes to the
query I/O cost estimation. The probability that a partial
histogram in an index entry has joint buckets with a query
predicate depends on how likely a predicate overlaps with
the highlighted area in partial histograms (see Figure 3).
The probability is determined by the equation given below:

Prob = (Average buckets hit by a query predicate)×D

= SF×H×D (6)

To be precise, Prob follows a piecewise function as follows:

Prob =

{

SF×H×D SF×H ! 1
D

1 SF×H > 1
D

Given the aforementioned discussion, we observe that
(1) when SF and H are fixed, the smaller D is, the smaller
Prob is. (2) when H and D are fixed, the smaller SF is, the
smaller Prob is. (3) when SF and D are fixed, the smaller
H is, the smaller Prob is. It is obvious that the probability
in Equation 6 is equivalent to the probability that pages in
an index entry are checked in the second phase, i.e., filter-
ing false positive pages. Since the total pages in Table R
is Card

pageCard
, the mathematical expectation of the number of

pages in R checked by the second part, as known as the I/O
cost of second part, is:

I/Ofiltering false positives = (Prob×
Card

pageCard
) (7)

By adding up I/Oscanning index (Equation 5) and
I/Ofiltering false positives (See Equation 7), the total query
I/O cost is as follows:

Query I/O =
Card

pageCard
×((H×

D×H−1
∑

i=0

1

H − i
)−1 + Prob) (8)

7. EXPERIMENTS
This section provides a comprehensive experimental eval-

uation of Hippo. All experiments are run on an Ubuntu
Linux 14.04 64 bit machine with 8 cores CPU (3.5 GHz per
core), 32 GB memory, and 2 TB magnetic hard disk. We
install PostgreSQL 9.5 (128 MB default buffer pool) on the
test machine.

Compared Approaches. During the experiments, we
study the performance of the following indexing schemes:
(1) Hippo: A complete prototype of our proposed index-
ing approach implemented inside the core engine of Post-
greSQL 9.5. Unless mentioned otherwise, the default partial

histogram density is set to 20% and the default histogram
resolution (H) is set to 400. (2) B+-Tree: The default imple-
mentation of the B+-Tree in PostgreSQL 9.5 (with a default
fill factor of 90), (3) BRIN: A sparse Block Range Index
implemented in PostgreSQL 9.5 with 128 default pages per
range. We also consider other BRIN settings, i.e., BRIN-32
and BRIN-512, with 32 and 512 pages per range respectively.

Datasets. We use the following four datasets:

• TPC-H : A 207 GB decision support benchmark that
consists of a suite of business oriented ad-hoc queries
and data modifications. Tables populated by TPC-
H follow a uniform data distribution. For evaluation
purposes, we build indexes on Linitem table PartKey,
SuppKey or OrderKey attribute. PartKey attribute
has 40 million distinct values while SuppKey has 2
million distinct values and the values of OrderKey at-
tribute are sorted. For TPC-H benchmark queries, we
also build indexes on L Shipdate and L Receiptdate
when necessary.

• Exponential distribution synthetic dataset (abbr. Ex-
ponential): This 200 GB dataset consists of three
attributes, IncrementalID, RandomNumber, Payload.
RandomNumber attribute follows exponential data
distribution which is highly skewed.

• Wikipedia traffic (abbr. Wikipedia) [2]: A 231
GB Wikipedia article traffic statistics covering seven
months period log. The log file consists of 4 attributes:
PageName, PageInfo, PageCategory, PageCount. For
evaluation purposes, we build index on the PageCount
attribute which stands for hourly page views.

• New York City taxi dataset (abbr. NYC Taxi) [1]:
This dataset contains 197 GB New York City Yellow
and Green Taxi trips published by New York City Taxi
& Limousine Commission website. Each record in-
cludes pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, and itemized fares.
We reduce the dimension of pick-up location from 2D
(longitude, latitude) to 1D (integer) using a spatial di-
mension reduction method, Hilbert Curve, and build
indexes on pick-up location attribute.

Implementation details. We have implemented a pro-
totype of Hippo inside PostgreSQL 9.5 as one of the main
index access methods by leveraging the underlying inter-
faces which include but not limited to ”ambuild”, ”amget-
bitmap”, ”aminsert” and ”amvacuumcleanup”. A Post-
greSQL 9.5 user creates and queries the index as follows:

CREATE INDEX hippo_idx ON lineitem USING hippo(partkey)

SELECT * FROM lineitem
WHERE partkey > 1000 AND partkey < 2000

DROP INDEX hippo_idx

The final implementation has slight differences from the
aforementioned details due to platform-dependent features.
For instance, Hippo only records possible qualified page IDs
in a tid bitmap format and returns it to the kernel. Post-
greSQL automatically inspects pages and checks each tuples
against the query predicate. PostgreSQL DELETE command

Table 3: Tuning Parameters

Parameter Value Size Initial.
time

Query
time

Default D=20%
R=400

1012 MB 2765 sec 2500 sec

Density
(D)

40% 680 MB 2724 sec 3500 sec

80% 145 MB 2695 sec 4500 sec

Resolution
(R)

800 822 MB 2762 sec 3000 sec

1600 710 MB 2760 sec 3500 sec

does not really remove data from disk unless a VACUUM com-
mand is called automatically or manually. Hippo then up-
dates the index for data deletion when a VACUUM command
is invoked. In addition, it is better to rebuild Hippo in-
dex if there is a huge change of the parent attribute’s his-
togram. Furthermore, a script, running as a background
process, drops the system cache during the experiments.

7.1 Tuning Hippo parameters
This section evaluates the performance of Hippo by tun-

ing two main system parameters: partial histogram density
D (Default value is 20%) and complete histogram resolu-
tion H (Default value is 400). For these experiments, we
build Hippo on PartKey attribute in Lineitem table of 200
GB TPC-H benchmarks. We then evaluate the index size,
initialization time, and query response time.

7.1.1 Impact of partial histogram density
The following experiment compares the default Hippo

density (20%) with two different densities (40% and 80%)
and tests their query time with selectivity factor 0.1%. As
given in Table 3, when we increase the density Hippo ex-
hibits less indexing overhead as expected. That happens
due to the fact that Hippo summarizes more pages per par-
tial histogram and write less index entries on disk. Similarly,
higher density leads to more query time because it is more
likely to overlap with query predicates and result in more
pages are selected as possible qualified pages.

7.1.2 Impact of histogram resolution
This section compares the default Hippo histogram reso-

lution (400) to two different histogram resolutions (800 and
1600) and tests their query time with selectivity factor 0.1%.
The density impact on the index size, initialization time and
query time is given in Table 3 .

As given in Table 3, with the growth of histogram res-
olution, Hippo size decreases moderately. The explana-
tion is that higher histogram resolution leads to less par-
tial histograms and each partial histogram in the index may
summarize more pages. However, the partial histogram (in
bitmap format) has larger physical size because the bitmap
has to store more bits.

As Table 3 shows, the query response time of Hippo varies
with the growth of histogram resolution. This is because for
the large histogram resolution, the query predicate may hit
more buckets so that this Hippo is more likely to overlap
with query predicates and result in more pages are selected
as possible qualified pages.

7.2 Indexing overhead
This section studies the indexing overhead (in terms of

index size and index initialization time) of the B+-Tree,

Figure 5: Index size on different datasets (log. scale) Figure 6: Index initial. time on different datasets

(a) TPC-H (b) Exponential (c) Wikipedia (d) NYC Taxi

Figure 7: Query response time at different selectivity factors

Hippo, BRIN (128 pages per range by default), BRIN-32,
and BRIN-512. The indexes are built on TPC-H Lineitem
table PartKey (TPCH PK), SuppKey (TPCH SK), Or-
derKey (TPCH OK) attributes, Exponential table Random-
Number attribute, Wikipedia table PageCount attribute,
NYC Taxi table pick-up location attribute.

As given in Figure 5, Hippo occupies 25 to 30 times
smaller storage space than the B+-Tree on all datasets (ex-
cept on TPC-H OrderKey attribute). This happens because
Hippo only stores disk page ranges along with page sum-
maries. Furthermore, Hippo on TPC-H PartKey incurs the
same storage space as that of the index built on the Sup-
pKey attribute (which has 20 times less distinct attribute
values). That means the number of distinct values does
not actually impact Hippo index size as long as it is larger
than the number of complete histogram buckets. Each at-
tribute value has the same probability to hit a histogram
bucket no matter how many distinct attribute values there
are. This is because the complete histogram leveraged by
Hippo summarizes the data distribution of the entire table.
Hippo still occupies small storage space on tables with dif-
ferent data distributions, such as Exponential, Wikipedia
and NYC Taxi data. That happens because the complete
histogram, which is height balanced makes sure that each tu-
ple has the same probability to hit a bucket and then avoid
the effect of data skewness. However, it is worth noting
that Hippo has a significant size reduction when the data is
sorted on TPC-H OrderKey attribute. In this case, Hippo
only contains five index entries and each index entry sum-
marizes thousands of pages. When data is totally sorted,
Hippo keeps summarizing pages until the first 20% of the
complete histogram buckets (No.1 - 80) are hit, then the
next 20% (No. 81 - 160), and so forth. Therefore, Hippo
cannot achieve competitive query time in this case.

In addition, BRIN exhibits the smallest index size among
the three indexes since it only stores page ranges and corre-

sponding value ranges (min and max values). Among differ-
ent versions of BRIN, BRIN-32 exhibits the largest storage
overhead while BRIN-512 shows the lowest storage overhead
because the latter can summarize more pages per entry.

On the other hand, as Figure 6 depicts, Hippo and BRIN
consume less time to initialize the index as compared to
the B+-Tree. That is due to the fact that the B+-Tree has
numerous index entries (tree nodes) stored on disk while
Hippo and BRIN have just a few index entries. Moreover,
since Hippo has to compare each tuple to the complete his-
togram which is kept in memory temporarily during index
initialization, Hippo may take more time than BRIN to ini-
tialize itself. Different versions of BRIN spends most of the
initialization time on scanning the data table and hence do
not show much time difference.

7.3 Query response time
This section studies the query response time of the three

indexes, B+-Tree, Hippo and BRIN (128 pages by default).
We first evaluate the query response time of the three in-
dexes when different query selectivity factors are applied.
Then, we further explore the performance of each index us-
ing the TPC-H benchmark queries which deliver industry-
wide practical queries for decision support.

7.3.1 Queries with different selectivity factors
This experiment studies the query execution performance

while varying the selectivity factor from 0.001%, 0.01%,
0.1% to 1%. According to the Hippo cost model, the corre-
sponding query time costs in this experiment are 0.2Card,
0.2Card, 0.2Card and 0.8Card. The indexes are built on
TPC-H Lineitem table PartKey attribute (TPC-H), Expo-
nential table RandomNumber attribute, Wikipedia table
PageCount attribute, NYC Taxi table pick-up location at-
tribute. We also compare different versions of BRIN (BRIN-
32 and BRIN-512) on TPC-H PartKey attribute.

(a) TPC-H (b) Exponential (c) Wikipedia (d) NYC Taxi

Figure 8: Data update time (logarithmic scale) at different update percentage

As the results shown in Figure 7, all the indexes consume
more time to query data on all datasets with the increas-
ing of query selectivity factors. All versions of BRIN are
two or more times worse than B+-Tree and Hippo at almost
all selectivity factors. They have to scan almost the entire
tables due to their very insufficient page summaries - value
ranges. Moreover, B+-Tree is not better than Hippo at 0.1%
query selectivity factor although it is faster than Hippo at
low query selectivity factors like 0.001% and 0.01%. Actu-
ally, the performance of Hippo is very stable on all datasets
including highly skewed data and real life data. In addition,
Hippo consumes much more time at the last selectivity fac-
tor 1% because it has to scan much more pages as predicted
by the cost model. Compared to the B+-Tree, Hippo main-
tains a competitive query response time performance at se-
lectivity factor 0.1% but consumes 25 - 30 times less storage
space. In contrast to BRIN, Hippo achieves less query re-
sponse time at the small enough index size. Therefore, we
may conclude that Hippo makes a good tradeoff between
query response time and index storage overhead at medium
query selectivity factors, i.e, 0.1%.

7.3.2 Evaluating the cost model accuracy
This section conducts a comparison between the estimated

query I/O cost and the actual I/O cost of running a query
on Hippo. In this experiment, we vary the query selectiv-
ity factors to take the values of 0.001%, 0.01%, 0.1%, and
1%. Hence, the average number of buckets hit by the query
predicate (SF ∗H) should be 0.004, 0.04, 0.4, and 4 respec-
tively. However, in practice, no in-boundary queries can
hit less than 1 bucket. Therefore, the average hit buck-
ets by predicates are 1, 1, 1 and 4. Given H = 400 and
D = 20%, the query I/O cost estimated by Equation 8 is

Card
pageCard

∗ (0.05% + 20%|20%|20%|80%). We observe that:
(1) Queries for the first three SF values yields pretty similar
I/O cost. That matches the experimental results depicted
in Figure 7. (2) The I/O cost of scanning index entries con-
sumes Card

pageCard
∗ 0.05% which is at least 40 times less than

that of filtering false positive pages.

Table 4: The estimated query I/O deviation from
the actual query I/O for different selectivity factors

SF 0.001% 0.01% 0.1% 1%

TPC-H 0.02% 0.02% 0.21% 6.18%

Exponential 0.37% 0.37% 0.35% 12.69%

Wikipedia 0.91% 0.91% 1.19% 9.10%

NYC Taxi 0.87% 0.87% 0.51% 13.39%

As Table 4 shows, the cost model exhibits high accuracy.
Furthermore, the cost model accuracy is stable especially
for the first three lower selectivity factors. However, when
SF = 1%, the accuracy is relatively lower especially on Ex-
ponential and NYC Taxi table. The reason behind that is
two-fold: (1) The 1% selectivity factor query predicate may
hit more buckets than the other lower SF values. That leads
to quite different overlap situations with partial histograms.
(2) The complete height balanced histogram, maintained
by the DBMS, does not perfectly reflect the data distri-
bution since it is created periodically using some statistical
approaches. Exponential and NYC Taxi tables exhibit rela-
tively more clustered/skewed data distribution. That makes
it more difficult to reflect their data distribution accurately.
On the other hand, the histogram of a uniformly distributed
TPC-H table is very accurate so that predicated I/O cost is
more accurate in this case.

7.3.3 TPC-H benchmark queries
This section compares Hippo to the B+-Tree and BRIN

using the TPC-H benchmark queries. We select all TPC-H
benchmark queries that contain typical range queries and
hence need to access an index. We then adjust their selec-
tivity factors to 0.1% (i.e., one week reports). We build the
three indexes on the L ShipDate (Query 6, 7, 14, 15 and 20)
and L ReceiptDate (Query 12) attributes in the Lineitem ta-
ble as required by the queries. The qualified queries, Query
6, 7, 12, 14, 15 and 20, perform at least one index search
(Query 15 performs twice) on the evaluated indexes.

Table 5: Query response time (Sec) on TPC-H

Index type Q6 Q7 Q12 Q14 Q15 Q20

B+-Tree 2450 259000 2930 2670 4900 3500

Hippo 2700 260400 3200 3180 5400 3750

BRIN 5600 276200 6200 6340 11300 6700

As Table 5 depicts, Hippo achieves similar query response
time to that of the B+-Tree and runs around two times faster
than BRIN on all selected TPC-H benchmark queries. It is
also worth noting that the time difference among all three
indexes becomes non-obvious for Query 7. That happens
because the query processor spends most of the time joining
multiple tables, which dominates the execution time for Q7.

7.4 Maintenance Overhead
This experiment investigates the index maintenance time

of three kinds of indexes, B+-Tree, Hippo and BRIN, on

(a) TPC-H (b) Exponential (c) Wikipedia (d) NYC Taxi

Figure 9: Throughput on different query / update workloads (logarithmic scale)

all datasets when insertions or deletions. The indexes are
built on TPC-H Lineitem table PartKey attribute, Exponen-
tial table RandomNumber attribute, Wikipedia table Page-
Count attribute, and NYC Taxi table Pick-up location at-
tribute. This experiment uses a fair setting which counts the
batch maintenance time after randomly inserting or delet-
ing a certain amount (0.0001% , 0.001%, 0.01%, and 0.1%)
of tuples. In addition, after inserting tuples into the parent
table, the indexes’ default update operations are executed
because they adopt an eager strategy to keep indexes up
to date. However, after deleting the certain amount of tu-
ples from the parent table, we rebuild BRIN from scratch
because BRIN does not have any proper update strategies
for deletion. We also compare different versions of BRIN
(BRIN-32 and BRIN-512) on TPC-H PartKey attribute.

As depicted in Figure 8 (in a logarithmic scale), Hippo
costs up to three orders of magnitude less time to maintain
the index than the B+-Tree and up to 50 times less time than
all versions of BRIN. This happens because the B+-Tree
spends more time on searching proper index entry insert /
delete location and adjusting tree nodes. On the other hand,
BRIN’s maintenance is very slow after deletion since it has
to rebuild the index after a batch of delete operations.

7.5 Performance on hybrid workloads
This section studies the performance of Hippo in hy-

brid query/update workloads. In this experiment, we
build the considered indexes on TPC-H Lineitem table
PartKey attribute, Exponential table RandomNumber at-
tribute, Wikipedia table PageCount attribute, and NYC
Taxi table Pick-up location attribute. We use five differ-
ent hybrid query/update workloads: 10%, 30%, 50%, 70%
and 90%. The percentage here stands for the percentage of
queries in the entire workload. For example, 10% means
10% of the operations that access the index are queries
and 90% are updates. The average selectivity factor is
0.1%. The index performance is measured by throughput
(Tuples/second) defined as the number of qualified tuples
queried or updated per a given period of time. The results
are given in Figure 9 (in logarithmic scale).

As it turns out in Figure 9, Hippo has the highest through-
put on all workloads. Hippo and BRIN can have higher
throughput at update-intensive workloads like 10% and
30%. That happens since Hippo and BRIN have less in-
dex maintenance time that that of the B+-Tree. On the
other hand, B+-Tree achieves higher throughput on query-
intensive workloads like 70% and 90%. This is due to the
fact that B+-Tree costs less or same query response time
compared to Hippo. Therefore, we can conclude that Hippo
performs orders of magnitudes better than BRIN and B+-

Tree for update-intensive workload. Furthermore, for query
intensive workloads, Hippo still can exhibit slightly better
throughput than that of the B+-Tree at a much small index
storage overhead.

8. RELATED WORK
Tree Indexes B+-Tree is the most commonly used type

of indexes. The basic idea can be summarized as follows:
For a non-leaf node, the value of its left child node must
be smaller than that of its right child node. Each leaf node
points to the physical address of the original tuple. With the
help of this structure, searching B+-Tree can be completed
in one binary search time scope. The excellent query perfor-
mance of B+-Tree and other tree like indexes is benefited by
their well designed structures which consist of many non-leaf
nodes for quick searching and leaf nodes for fast accessing
parent tuples. This feature incurs two inevitable drawbacks:
(1) Storing plenty of nodes costs a huge chunk of disk stor-
age. (2) Index maintenance is extremely time-consuming.
For any insertions or deletions occur on parent table, tree
like indexes firstly have to traverse themselves for finding
proper update locations and then split, merge or re-order
one or more nodes which are out of date.

Bitmap Indexes A Bitmap index [12, 16, 21] has been
widely applied to low cardinality and read-only datasets. It
uses bitmaps to represent values without trading query per-
formance. However, Bitmap index’s storage overhead signif-
icantly increases when indexing high cardinality attributes
because each index entry has to expand its bitmap to ac-
commodate more distinct values. Bitmap index also does
not perform well in update-intensive workloads due to tuple-
wise index structure.

Compressed Indexes Compressed indexes drop some
repeated index information to save space and recover it as
fast as possible upon queries but they all have guaranteed
query accuracy. These techniques are applied to tree in-
dexes [9, 10]. Though compressed indexes are storage econ-
omy, they require additional time for compressing before-
hand and decompressing on-the-fly. Compromising on the
time of initialization, query and maintenance is not desirable
in many time-sensitive scenarios.

Approximate Indexes Approximate indexes [4, 11, 14]
give up the query accuracy and only store some represen-
tative information of parent tables for saving indexing and
maintenance overhead and improving query speed. They
propose many efficient statistics algorithms to figure out the
most representative information which is worth to be stored.
In addition, some people focus on approximate query pro-
cessing (AQP)[3, 20] which relies on data sampling and error

bar estimating to accelerate query speed directly. However,
trading query accuracy makes them applicable to limited
scenarios such as loose queries.

Sparse Indexes A spars index, e.g., as Zone Map [5],
Block Range Index [17], Storage Index [18], and Small Mate-
rialized Aggregates (SMA) index [13], only stores pointers to
disk pages / column blocks in parent tables and value ranges
(min and max values) in each page / column block so that
it can reduce the storage overhead. For a posed query, it
finds value ranges which cover the query predicate and then
inspects the associated few parent table pages one by one
for retrieving truly qualified tuples. However, for unordered
data, a sparse index has to spend lots of time on page scan-
ning since the stored value ranges (min and max values)
may cover most query predicates. In addition, column im-
prints [15], a cache-conscious secondary index, significantly
enhances the traditional sparse indexes to speed up queries
at a reasonably low storage overhead in-memory data ware-
housing systems. It leverages histograms and bitmap com-
pression but does not support dynamic pages / column block
size control to further optimize the storage overhead re-
duction especially with partially clustered data. The col-
umn imprints approach is designed to handle query-intensive
workloads and puts less emphasis on efficiently update the
index in row stores.

9. CONCLUSION AND FUTURE WORK
The paper introduces Hippo a data-aware sparse indexing

approach that efficiently and accurately answers database
queries. Hippo occupies up to two orders of magnitude
less storage overhead than de-facto database indexes, i.e.,
B+-tree while achieving comparable query execution per-
formance. To achieve that, Hippo stores page ranges in-
stead of tuples in the indexed table to reduce the storage
space occupied by the index. Furthermore, Hippo main-
tains histograms, which represent the data distribution for
one or more pages, as the summaries for these pages. This
structure significantly shrinks index storage footprint with-
out compromising much performance on high and medium
selectivity queries. Moreover, Hippo achieves about three
orders of magnitudes less maintenance overhead compared
to the B+-tree and BRIN. Such performance benefits make
Hippo a very promising alternative to index high cardinality
attributes in big data application scenarios. Furthermore,
the simplicity of the proposed structure makes it practical
for DBMS vendors to adopt Hippo as an alternative indexing
technique. In the future, we plan to adapt Hippo to support
more complex data types, e.g., spatial data, unstructured
data. We also plan to study more efficient concurrency con-
trol mechanisms for Hippo. Furthermore, we also plan to
extend Hippo to function within the context of in-memory
database systems as well as column stores.

10. ACKNOWLEDGEMENT
This work is supported by the National Science Founda-

tion under Grant 1654861.

11. REFERENCES
[1] New york city taxi and limousine commission. http://www.

nyc.gov/html/tlc/html/about/trip_record_data.html.
[2] Page view statistics for wikimedia projects.

https://dumps.wikimedia.org/other/pagecounts-raw/.

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar,
M. Jordan, S. Madden, B. Mozafari, and I. Stoica. Knowing
when you’re wrong: building fast and reliable approximate
query processing systems. In Proceedings of the
International Conference on Management of Data,
SIGMOD, pages 481–492. ACM, 2014.

[4] M. Athanassoulis and A. Ailamaki. Bf-tree: Approximate
tree indexing. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, pages
1881–1892. VLDB Endowment, 2014.

[5] C. Bontempo and G. Zagelow. The ibm data warehouse
architecture. The Communications of the ACM,
41(9):38–48, 1998.

[6] T. P. P. Council. Tpc-h benchmark specification.
http://www. tcp. org/hspec. html, 2008.

[7] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox,
coupon collectors, caching algorithms and self-organizing
search. Discrete Applied Mathematics, 39(3):207–229, 1992.

[8] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-fli:
on-the-fly compression, archiving and indexing of streaming
network traffic. VLDB Journal, 3(1-2):1382–1393, 2010.

[9] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. In Proceedings of the International
Conference on Data Engineering, ICDE, pages 370–379.
IEEE, 1998.

[10] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A tunable
compression framework for bitmap indices. In Proceedings
of the International Conference on Data Engineering,
ICDE, pages 484–495. IEEE, 2014.

[11] M. E. Houle and J. Sakuma. Fast approximate similarity
search in extremely high-dimensional data sets. In
Proceedings of the International Conference on Data
Engineering, ICDE, pages 619–630. IEEE, 2005.

[12] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves
word-aligned bitmap indexes. Data & Knowledge
Engineering, 69(1):3–28, 2010.

[13] G. Moerkotte. Small materialized aggregates: A light
weight index structure for data warehousing. In Proceedings
of the International Conference on Very Large Data Bases,
VLDB, pages 476–487. VLDB Endowment, 1998.

[14] Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima, et al.
The a-tree: An index structure for high-dimensional spaces
using relative approximation. In Proceedings of the
International Conference on Very Large Data Bases,
VLDB, pages 5–16. VLDB Endowment, 2000.

[15] L. Sidirourgos and M. L. Kersten. Column imprints: a
secondary index structure. In Proceedings of the
International Conference on Management of Data,
SIGMOD, pages 893–904. ACM, 2013.

[16] K. Stockinger and K. Wu. Bitmap indices for data
warehouses. Data Warehouses and OLAP: Concepts,
Architectures and Solutions, page 57, 2006.

[17] M. Stonebraker and L. A. Rowe. The design of postgres. In
Proceedings of the International Conference on
Management of Data, SIGMOD. ACM, 1986.

[18] R. Weiss. A technical overview of the oracle exadata
database machine and exadata storage server. Oracle White
Paper. Oracle Corporation, Redwood Shores, 2012.

[19] K. Wu, E. Otoo, and A. Shoshani. On the performance of
bitmap indices for high cardinality attributes. In
Proceedings of the International Conference on Very Large
Data Bases, VLDB, pages 24–35. VLDB Endowment, 2004.

[20] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The
analytical bootstrap: a new method for fast error
estimation in approximate query processing. In Proceedings
of the International Conference on Management of Data,
SIGMOD, pages 277–288. ACM, 2014.

[21] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In Proceedings of
the International Conference on Data Engineering, ICDE,
pages 59–59. IEEE, 2006.

