
Indexing the Pickup and Drop-off Locations of

NYC Taxi Trips in PostgreSQL – Lessons from

the Road⋆

Jia Yu1 and Mohamed Sarwat2

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, Arizona 85281

{jiayu21,msarwat2}@asu.edu

Abstract. In this paper, we present our experience in indexing the drop-
off and pick-up locations of taxi trips in New York City. The paper
presents a comprehensive experimental analysis of classic and state-of-
the-art spatial database indexing schemes. The paper evaluates a pop-
ular spatial tree indexing scheme (i.e., GIST-Spatial), a Block Range
Index (BRIN-Spatial) provided by PostgreSQL as well as a new in-
dexing scheme, namely Hippo-Spatial. In the experiments, the paper
considers five evaluation metrics to compare and contrast the perfor-
mance of the three indexing schemes: storage overhead, index initial-
ization time, query response time, maintenance overhead, and through-
put. Furthermore, the benchmark takes into account parameters that
affect the index performance, which include but is not limited to: data
size, spatial query selectivity, and spatial area density, The paper fi-
nally analyzes the experimental evaluation results and highlights the
key insights and lessons learned. The results emphasize the fact that
there is no one size that fits all when it comes to indexing massive-scale
spatial data. The results also prove that modern database systems can
maintain a lightweight index (in terms of storage and maintenance over-
head) that is also fast enough for spatial data analytics applications. The
source code for the experiments presented in the paper is available here:
https://github.com/DataSystemsLab/hippo-postgresql

1 Introduction

The volume of available geospatial data increased tremendously and such data
keeps evolving in unprecedented rates. For instance, New York City Taxi and
Limousine Commission has recently released a taxi dataset (abbr. NYC Taxi) [1].
The dataset contains close to 200 Gigabytes of New York City Yellow Cab and
Green Taxi trips. The dataset contains detailed records of over 1.1 billion indi-
vidual taxi trips in the city from January 2009 through December 2016. Each
record includes pick-up and drop-off dates/times, pick-up and drop-off precise
location coordinates, trip distances, itemized fares, and payment method. Fig-
ure 1(a) depicts a heat map of the NYC taxi trips. To make sense of the NYC

⋆ This work is supported by the National Science Foundation Grant 1654861

(a) NYC Taxi Trips Heat Map (b) Taxi Trips in the Laguardia Airport Regions

Fig. 1: NYC Taxi Trips

taxi data, the first step is to digest the dataset in a database system. The user
can then issue spatial queries using SQL, e.g., find all Taxi trips to Laguardia
airport (see Figure 1 (b)).

To speed up such queries, a user may build a spatial index, e.g., R-tree, on
the location or geometry attribute. Even though classic database indexes [8, 13]
improve the query response time, they usually yield close to 15% additional stor-
age overhead. Although the overhead may not seem too high for small databases,
it results in non-ignorable cost in massive-scale spatial database scenarios, e.g.,
Taxi trips locations. Moreover, existing database systems take a lot of time in
initializing and bulk loading the spatial index (e.g, R-Tree or Quad-Tree [10, 20,
24]) especially when the size of indexed spatial data reaches hundreds of Giga-
bytes or more. Furthermore, spatial indexes supported by state-of-the-art spatial
database systems, e.g., PostGIS [4], are designed with the implicit assumption
that the underlying spatial data does not change much. However, many modern
applications constantly insert new spatial data into the database, e.g., insert-
ing a new taxi trip record. Maintaining a database index incurs high latency
since the DBMS has to locate and update those index entries affected by the
underlying table changes. For instance, maintaining an R-Tree searches the tree
structure and perhaps performs a set of tree nodes splitting or merging opera-
tions. That requires plenty of disk I/O operations and hence encumbers the time
performance of the entire DBMS in update intensive application scenarios.

In this paper, we present our experience in indexing the drop-off and pick-up
locations of NYC taxi trips. The paper presents a comprehensive experimen-
tal analysis of classic and state-of-the-art spatial database indexing schemes
supported in PostgreSQL (a popular open source database system) [23, 5]. The
paper evaluates a popular spatial tree indexing scheme (i.e., GiST-Spatial [15,
18, 14, 2]), a Block Range Index [3] (denoted as BRIN-Spatial) provided by Post-
greSQL as well as a new indexing scheme, namely Hippo-Spatial [28, 27]. The
experiments consider five main evaluation metrics, briefly described as follows:
(1) Storage overhead: the extra storage space occupied by the spatial index struc-
ture, (2) Index initialization time: the time the system takes to create and bulk
load the index. (3) Query response time: the time the database system takes to

search the index and retrieve the corresponding spatial data (i.e., Taxi trips),
(4) Maintenance overhead: the time the system takes to maintain the spatial
index in response to data insertion or deletion. (5) Throughput: the number
of data access operations, given a hybrid query/update workload, the database
system can process on the indexed table in a given time period. Furthermore,
the benchmark takes into account parameters that affect the index performance,
which include but is not limited to: data size, spatial query selectivity, and spa-
tial area density, The paper finally analyzes the experimental evaluation results
and highlights the key insights and lessons learned. The results emphasize the
fact that there is no one size that fits all when it comes to indexing massive-scale
spatial data. The results also prove that modern database systems can maintain
a lightweight index (in terms of storage and maintenance overhead) that is also
fast enough for spatial data analytics applications.

The rest of the paper is organized as follows. Section 2 describes the spatial
database indexing approaches considered in the benchmark. Section 3 describes
the experimental environment and setup. Sections 4 to 7 explains the experi-
mental evaluation results and their analysis. Finally, Section 8 highlights the
key lessons learned from the benchmark.

2 Studied Spatial Database Indexing Schemes

This section gives an overview of the spatial database indexing schemes consid-
ered in the analysis. Section 2.1 summarizes the Generalized Search Tree (GiST-
Spatial) indexing scheme while Section 2.2 gives an overview of Block Range
Indexes (BRIN-Spatial). Section 2.3 highlights the details of the Hippo-Spatial
indexing scheme.

2.1 Generalized Search Tree (GiST-Spatial)

Index structure A Generalized Search Tree is a balanced search tree that
accepts arbitrary data types including spatial data [15]. It holds the similar
<key, pointer> tree structure like B-Tree or R-Tree [9, 13, 19, 26] but the key
varies according to the data type. To index spatial data [11, 12, 29, 13, 16], the
key is 2 dimensional rectangle which is the Minimum Bounding Rectangle (MBR)
of its child nodes. In a non-leaf node, the pointer points to its child node while
in a leaf node, the pointer points to the parent table tuple. In other words,
GiST-Spatial’s basic idea is to group nearby spatial objects together and use a
upper tree node stores their Minimum Bounding Rectangle (MBR) as well as
pointers. Let m be the minimum allowed child nodes, N be the number of records,
Levels = [logmN]. A GiST-Spatial can contain up to

∑Levels

i=1
[N/mi] nodes. The

GiST-Spatial bulk-loading [17] algorithm runs in a bottom-up fashion, which
is indeed faster than inserting tuple one by one. The bulk loading algorithm
generates plenty of tree nodes besides tuples pointers and, in practice, it writes
many temporary files onto disk for scalability.

Index search. The index search algorithm takes as input a spatial rectan-
gular range predicate. The algorithm starts at the root node and traverses the
child nodes that satisfy the spatial predicate. The algorithm then prunes sub-
trees in GiST-Spatial, which possess MBRs that do not intersect with the spatial
query predicate. The algorithm performs this step recursively until it reaches the
tree leaf level and finally returns all spatial objects that lie within the spatial
query range. The tree structure of GiST-Spatial offers fast index search on highly
selective queries at the cost of excessive indexing and maintenance overhead.

Index maintenance. Insertion/Deletion in GiST-Spatial is similar to the
R-Tree in the sense that it maintains a balanced tree structure. The update
algorithm first traverses the tree and finds the node where the new index entry
<key, pointer> should be inserted in / deleted from. For insertion, in case there
is no space available, the target tree node will be split and GiST-Spatial will
adjust other tree nodes to ensure the tree balance is preserved. For deletion,
GiST-Spatial will merge tree nodes with extra space caused by data deletion
and also adjust the tree nodes.

2.2 Block Range Index (BRIN-Spatial)

Index structure. As opposed to GIST, BRIN-Spatial is a sparse index [6,
22, 25, 21] that only stores pointers to disk pages in the indexed table.

Fig. 2: BRIN-Spatial

BRIN-Spatial groups pages into a fixed
disk page range unit (128 pages per range
by default). Each index entry in BRIN-
Spatial contains two components: a static
disk page range (e.g., page 1 - 10) and
a Minimum Bounding Rectangle (MBR)
that encloses all spatial data tuples that
are recorded in the page range. The index
initialization algorithm scans the indexed
table only once to generate BRIN-Spatial.
For each page range, BRIN-Spatial reads
all tuples to construct the MBR for each
index entry. An example of BRIN-Spatial
is given in Figure 2.

Index search. Given a spatial range query, the query processor only searches
the index entries for which the MBRs intersect with the spatial query predicate.
It is highly recommended to ensure that the indexed spatial objects physically
maintain their spatial locality in a certain way, e.g., sorting by longitude/latitude
coordinate or Hilbert curve. In that case, the index entries keep the minimal
MBR overlap between each other. Under this premise, BRIN-Spatial is able to
prune lots of disk pages without scanning them.

Index maintenance. For a newly inserted tuple, BRIN-Spatial first finds
the page range it belongs to and then checks the tuple against the MBR of

this page range. If the tuple is outside the MBR, BRIN-Spatial updates the
MBR to cover the tuple otherwise BRIN-Spatial does nothing. For deletions,
BRIN-Spatial does not update any index entries after delete tuples to improve
performance. The underlying database will make a note on deleted tuples and
make sure these tuples disappear from the returned tuples even if BRIN-Spatial
returns them by mistake.

2.3 Hippo-Spatial

Index structure. Hippo1 is a data-aware sparse index [28]. In context of spa-
tial data, each Hippo (denoted as Hippo-Spatial) index entry is composed of
two components: a dynamic disk page range and a histogram-based page range
summary (depicted in Figure 3). In the summary, specifically, the simplified his-
togram (called partial histogram), each bit shows whether the corresponding two
dimensional bucket presents (1) in this page range or not (0). The histogram-
based summary is extracted from the two complete load balanced 1D histograms
on X and Y axises, respectively (visualized histograms given in Figure 3). Such
histograms are widely supported and naturally maintained by most existing
DBMSs and execute with no much extra cost. Two 1D histogram buckets, one
from X axis and one from Y, represent a 2D bucket. We number a 2D histogram
bucket by its 1D buckets on X and Y. For example, bucket (1,1) represents
the bucket on the lower-left corner of Figure 3 histogram. Hippo-Spatial iter-
ates each parent table tuple and groups as ranges contiguous similar pages (in
terms of data distribution). In the partial histogram of each page range, dis-
tinct histogram buckets hit by tuples are marked as 1 in corresponding bits.
Hippo-Spatial ensures that the partial histogram in each index entry has the
same density:

Partial histogram density (D) =
Bucketsvalue=1

Bucketscomplete histogram

Index search. When a spatial range query is issued, the system first locates
the histogram buckets cover / intersect / covered by the query predicate and
outputs a partial histogram similar to the histogram-based summary maintained
for each index entry. Then, the search algorithm reads each index entry and filters
out the index entries for which the histogram-based summary has no common
buckets with the query predicate. For all index entries that match the query
predicate, the search algorithm inspects the corresponding disk pages and the
qualified data tuples are returned.

Index maintenance. When a new tuple is inserted, Hippo-Spatial updates
the index entries in an eager manner. It first finds the 2D histogram bucket
where the tuple falls in and then runs a binary search on index entry sorted list
to locate the page range which the tuple belongs to. The sorted list maintains a
list of index entry pointers that are sorted in the ascending order of their start
page ID. If this tuple hits a distinct histogram bucket, the partial histogram

1 Source code: https://github.com/DataSystemsLab/hippo-postgresql

Fig. 3: Hippo-Spatial - Index Structure

in Hippo-Spatial index entry will set the corresponding bit to 1; if no distinct
buckets hit, Hippo-Spatial does nothing instead. On the other hand, Hippo-
Spatial deletion runs in a lazy manner. This means Hippo-Spatial updates the
index entries only for a batch of deletion operations. During the update, Hippo-
Spatial scans the index entries and in case some tuples in a certain page range
are deleted, Hippo-Spatial will re-summarize all pages in this page range and
update the index entry.

3 Experimental Environment

We conduct the experiments on PostgreSQL 9.6 and PostGIS 2.3 with 128 MB
default buffer pool. After fully loading the NYC city taxi trip dataset into Post-
greSQL, the corresponding NYC Taxi trips table occupies 25 million PostgreSQL
disk pages on the test machine. The size of PostgreSQL default buffer pool is
rather small while the operating system memory is too large to be ignored. To
avoid the impact of pre-cached data, we clear OS cache before each single trans-
action. We leverage the EXPLAIN ANALYZE, a PostgreSQL built-in performance
analysis tool, to capture the execution time of all transactions and count the disk
I/O operations. We use the default PostgreSQL 9.6 settings in all experiments.
We use the (CREATE INDEX) (given below) to build the specified index on top
of the NYC taxi trip table in PostgreSQL:

CREATE INDEX hippo_idx ON NYCTaxi USING Hippo (PickUpLocation);

All indexes are built on the NYC Taxi dataset pick-up location (i.e., latitude and
longitude coordinate) attribute. For the sake of GiST-Spatial and BRIN-Spatial,
the latitude and longitude coordinates are represented by a single coordinate at-
tribute in PostgreSQL compatible geometry format. Two Hippo-Spatial indexes
with the same configuration are built on latitude and longitude, respectively.
BRIN-Spatial allows a parameter called Pages Per Range (P) which specifies

(a) Index size (b) Index initialization time

Fig. 4: Indexing overhead on different data scales (logarithmic scale)

the number of parent table pages summarized by each index entry. We use 32,
128 (default) and 512 to tune BRIN-Spatial. Hippo-Spatial accepts a parameter
named Density (D) to control the partial histogram density inside each index
entry. Its performance is also impacted by the number of buckets in the complete
histogram (H). We choose three parameter combinations to tune Hippo-Spatial:
(1) D = 20% H = 400 (default setting) (2) D = 40% H = 400 (3) D = 20% H
= 800. All indexes use their default settings unless otherwise stated.

We issue a spatial range query on NYC Taxi table with a particular query
window and qualified tuples are returned to the psql front-end. The format used
in the experiments is:

EXPLAIN ANALYZE SELECT count(*) FROM NYCTaxi WHERE <predicate>;

The predicate represents a spatial range query window targeted at the pick-up
attribute written in an index-dependent format. All insertions work in an eager
manner to ensure the query correctness. In the experiments, we use the (INSERT
INTO NYCTaxi VALUES (aTrip)) SQL command to inserts a new Taxi trip tuple
in the NYC taxi trips table. We also use (COPY NYCTaxi FROM aFile) command
to insert a batch of tuples in a single operation in order to avoid unnecessary
I/O. Nonetheless, it still performs the insertion/index update tuple by tuple. In
PostgreSQL, a DELETE operation just makes a note on the deleted tuples and
hides them from the output instead of immediately removing them physically.
That is due to the fact that clearing and recycling deleted tuples’ physical space
is a time-consuming process. All physical deletions and corresponding index up-
dates only happen when the VACUUM command is invoked. The VACUUM command
runs periodically but also accepts manual invocation from the user.

4 Studying the indexing overhead

This section studies the indexing overhead incurred by the three compared in-
dexing schemes. We build three indexes on different sizes of the New York Taxi
Trip data and record the corresponding overhead (Figure 4) including index size
and index initialization time. Results of using different index parameters are
described in Figure 5 and Figure 6.

4.1 Index Size

As depicted in Figure 4a, Hippo-Spatial occupies close to two orders of magni-
tude less storage space than GiST-Spatial. That happens due to the fact that
GiST-Spatial stores the pointers of hundreds of millions of Taxi trips in the ta-
ble and maintains a Minimum Bounding Rectangle in each tree node. On the
other hand, Hippo-Spatial only stores disk page ranges and MBR summaries.
A tuple pointer is a physical address that consists of a disk page ID and slot
ID. Once the index search is completed, GiST-Spatial collects the pointers and
passes them to the DBMS. Given a tuple pointer, the DBMS directly jumps to
the specified address and retrieves the embedded tuple without any rechecks.
Retrieving a small amount of pointers during queries is fast, yet storing 1.1 bil-
lion tuple pointers in an index is very space-consuming. In addition, each MBR
is represented by four double values, minimum X and Y, maximum X and Y,
also occupies non-negligible storage space. On the contrary, each Hippo-Spatial
index entry only contains a disk page range and a concise summary. Generally
speaking, a disk page may store 50 - 100 tuples, and that is why Hippo-Spatial
incurs much less storage overhead.

As given in Figure 4a, Hippo-Spatial leads to more storage overhead than
BRIN-Spatial. That happens because Hippo-Spatial, as opposed to BRIN-
Spatial, is data-aware and hence speeds up the search process. Each Hippo-
Spatial index entry stores a histogram-based page summary instead of a simple
MBR. Nonetheless, the extra storage space occupied by Hippo-Spatial is rela-
tively small since its size is less than 1% of the indexed table.

Fig. 5: Index size (log. scale)

Figure 5 studies the storage over-
head of both BRIN-Spatial and
Hippo-Spatial using different param-
eter settings. For instance, Hippo-
D20%-H400 denotes a hippo index
with density set to 20% and the
number of histogram buckets set to
400 and BRIN-P128 denotes a BRIN-
Spatial index with 128 pages per
range. Hippo-Spatial occupies 100
times larger disk space than BRIN-
Spatial. That makes sense because
each index entry in Hippo-Spatial
maintains a histogram-based sum-
mary of a dynamic page range while
BRIN-Spatial only stores the Minimum Bounding Rectangle per each page range.
Each summary in Hippo-Spatial represents a partial histogram and each bucket
in this histogram is represented by a single bit. Although Hippo-Spatial com-
presses these partial histograms, they are still much larger than a simple MBR.
As the number of pages per range increases, BRIN-Spatial occupies less disk
space since it summarizes more pages within one range at the cost of slower
query response time. For different Hippo-Spatial parameter combinations, The

higher the histogram density, the more pages each Hippo-Spatial index entry
summarizes. That will also lead to more tuples being summarized by each in-
dex entry. Maintaining the same density but increasing the total number of
histogram buckets leads to an increase in the storage space occupied by Hippo-
Spatial. That happens because more complete histogram buckets also leads to
more tuples hitting more distinct buckets in each partial histogram.

4.2 Index initialization time

Fig. 6: Initialization time

Figure 4b depicts the index initializa-
tion time incurred by creating each of
the three indexes in PostgreSQL. The
system takes the same time to bulk
load Hippo-Spatial and BRIN-Spatial
because each of them scans the in-
dexed table tuple by tuple and sum-
marizes each encountered tuple using
an in-memory validation operation.
The only difference is that, given a tu-
ple, Hippo-Spatial finds the histogram
bucket to which the tuple belongs us-
ing binary search while BRIN-Spatial
checks whether the retreived tuple is
covered by the temporary MBR and updates the MBR if needed. Moreover, Post-
greSQL spends two orders of magnitude more time to bulk load GiST-Spatial
compared to BRIN-Spatial and Hippo-Spatial. This happens because the initial-
ization algorithm in GiST-Spatial is rather complex and requires a large number
of temporary disk files to decide the boundries of the minimum bounding rectan-
gles. Hence, the intensive disk I/O cost encumbers the initialization performance
of GiST-Spatial.

Figure 6 depicts how a variety of parameters settings impact the initialization
time of both BRIN-Spatial and Hippo-Spatial. Hippo-Spatial takes 30% less ini-
tialization time than BRIN-Spatial. That happens due to the fact that the index
initialization algorithm makes use of a temporary in-memory data structure (de-
noted TmpEntry) to store the to-be-persisted index entry. For BRIN-Spatial and
Hippo-Spatial, TmpEntry keeps summarizing new incoming tuples and updates
MBR for BRIN-Spatial (partial histogram for Hippo-Spatial) if needed. This pro-
cess continues until BRIN-Spatial reaches pages per range limit or Hippo-Spatial
reaches the density limit. Then, TmpEntry will be serialized and persisted to
disk. However, in most cases of Hippo-Spatial, the TmpEntry data structure is
rarely updated because TmpEntry only notes distinct histogram buckets hit by
the the scanned tuples. Unlike Hippo-Spatial, BRIN-Spatial initialization algo-
rithm keeps updating the MBR as long as the newly summarized tuple not fully
covered by the MBR. Such frequent TmpEntry updates lead to the gap in the
initialization time.

(a) Query time (b) Index probe time (log. scale)

Fig. 7: Varying the spatial range query selectivity factor

5 Evaluating the query response time

This section studies the query execution performance time using each of the
three considered indexing indexes. To identify the proper scenarios for different
indexes, we define two metrics of spatial range query: spatial range query selec-
tivity and query range area size. The categorized results are given in Figures 7
and 9.

5.1 Varying the spatial range query selectivity factor

This section studies the impact of varying the spatial range query selectivity
factor on the query response time. The selectivity factor of a given spatial range
query is calculated as the ratio of the total NYC taxi trips returned by run-
ning the spatial range query over the total number trips stored in the database.
We vary the average spatial range query selectivity from 0.001%, 0.01%, 0.1%
to 1%. To generate the query workload with average selectivity, we first create
GiST-Spatial index on the pick-up/drop-off location and randomly select a set
of query points from the table. Then, we use each query point to issue a K
Nearest Neighbors (KNN) searches on the NYC taxi table. The number K refers
to the number of tuples returned by 0.001% - 1% selectivity queries. For each
KNN query, the returned Kth nearest neighbor and its mirror point against the
query point represent a query range window that has the specified range selec-
tivity. The generated spatial range queries are then used to run the experiments
and the reported query execution time in Figure 7 represents the average time
PostgreSQL took to run the query workload.

As shown in Figure 7, GiST-Spatial exhibits two orders of magnitude faster
query execution performance than Hippo-Spatial and BRIN-Spatial on highly
selective queries (0.001% selectivity factor). As the spatial range query selec-
tivity factor becomes higher (lower selectivity), the query execution time gap
between GiST-Spatial and Hippo-Spatial diminishes. For 0.1% and 1% selectiv-
ity factors, Hippo-Spatial is able to achieve similar query execution performance
to that of GiST-Spatial. That happens due to the fact that, for highly selective

Fig. 8: Inspected data pages on different query selectivities

queries (e.g., 0.001% selectivity), GiST-Spatial’s balanced tree structure is able
to prune disjoint subtrees and retrieve only a small amount of qualified NYC taxi
tuples to recheck. On the other hand, Hippo-Spatial still has much more pos-
sible qualified page to inspect. For less selective queries (selectivity factor 0.1%
and 1%), GiST-Spatial also has to retrieve more tuples for further inspection
and that is why it has similar performance to that of Hippo-Spatial. However,
BRIN-Spatial exhibits the slowest query execution performance as compared to
GiST-Spatial and Hippo-Spatial. The main reason is that all Minimum Bound-
ing Rectangles store with each index entry in BRIN-Spatial span the entire New
York City metropolitan area and BRIN-Spatial actually inspects almost all disk
pages occupied by the NYC taxi table to process queries with different selecitvi-
ties.

Figure7b describes the index probe time on different selectivity factors. The
index probe time refers in particular to the time these indexes spend on searching
index entries when a query is issued. That excludes the time the database system
takes to read the data pages. For GiST-Spatial, the index probe time stands for
the time GiST-Spatial used to find all qualified tuple pointers. The upcoming
GiST-Spatial refine and data page retrieval phase is taken care of by PostgreSQL.
For BRIN-Spatial and Hippo-Spatial, the index probe time represents the time
these indexes spend on traversing all index entries. It is obvious that the index
probe time for BRIN-Spatial and Hippo-Spatial is constant for all spatial range
selectivity factors. That happens due to the fact that BRIN-Spatial and Hippo-
Spatial always scan all index entries. On the other hand, for higher selectivity
factors, GiST-Spatial have to expand its probe range and go to lower tree levels.
Figure 7b shows that the index probe time of GiST-Spatial, in fact, increases
exponentially.

Figure 8 depicts the total number of inspected data pages using different in-
dex parameters. Both BRIN-Spatial and Hippo-Spatial need to inspect possible
qualified pages for retrieving the truly qualified tuples. As given in Figure 8,
Hippo-Spatial inspects less pages than BRIN-Spatial. To be precise, Hippo-
Spatial with 20% density inspects up to 6 times less NYC taxi data pages on
0.001% and 0.01% selectivity factors and BRIN-Spatial inspects up to 40% more

(a) Queries in dense locations (b) Queries in random locations

Fig. 9: Query time issued in different spatial areas

disk pages for queries with 0.1% and 1% selectivity factors. That happens be-
cause Hippo-Spatial is able to prune more data pages since it only inspects page
ranges which have joint histogram buckets with the spatial query predicate.
Hippo-Spatial with 40% density and Hippo-Spatial with 800 histogram buck-
ets (i.e., Hippo-D40%-H800) experience slower query execution time as compare
to Hippo-Spatial. The partial histograms of Hippo-D40%-H800 are too full and
too many bits set to 1. That increases the probability that each index entry in
Hippo-Spatial has joint buckets with the spatial query predicate. It is also worth
noting that BRIN-Spatial in general (with various parameters setting) inspects
the same number of data pages since it always inspects the entire table due to
its data-agnostic nature.

5.2 Varying the spatial range area size

This section studies the impact of varying the size of the spatial range area.
The range area represents the area covered by the issued spatial range query. In
Section 5.1, we discussed the query response time for different query selectivity
factors. However, users rarely issue spatial queries in strict accordance to the
selectivity factor. Assume that a user observe the NYC taxi dataset on a web
browser. The user usually searches dense areas. In fact, spatial data is alway
highly skewed and sparse areas such as deserts are less interesting for analysts.
We define two types of queries:

– random area spatial query (studied in Figure 9b): To generate such queries,
we issue spatial range queries in random locations that lie within the New
York City region.

– dense area spatial queries (studied in Figure 9a): To generate this work-
load, we limit the spatial queries to dense locations (e.g., Manhattan). A
dense location contains a large number of Taxi trips. For instance, the
hottest/densest data areas in New York Taxi dataset are Times Square,
JFK airport and Laguardia airport.

Furthermore, we vary the range area size from 10−5% to 0.01%. Larger range
area such as 0.001% or 0.01% exposes the region of a city while smaller range

(a) Data insertion time (b) Data deletion time

Fig. 10: Index maintenance performance on different data update percentage

area such 10−5% exhibits the nearby businesses of our current location. Results
are given in Figure 9. As it turns out in Figure 9b, GiST-Spatial achieves the best
query execution performance for queries generated in random locations within
NYC. That happens because spatial data is always skewed and most spatial
range queries only return few tuples. On the contrary, in Figure 9a, GiST-Spatial
takes much more time for queries issued in dense areas of NYC. That is due to the
fact that the number of taxi trip records in the Manhattan (i.e., dense) area are
far more than other areas in New York City. Moreover, Hippo-Spatial exhibits
just a bit slower query execution performance than GiST-Spatial. BRIN-Spatial,
on the other hand, exhibits the slowest query execution performance since it has
to inspect a large fraction of data pages.

6 Studying the index maintenance overhead

This section studies the index maintenance overhead of all considered index-
ing schemes. We study the overhead incurred by two main index maintenance
operations, i.e., insertion (see Figure 10a) and deletion time (see Figure 10b).

6.1 Insertion time

This section studies the time the database system takes to update the index
when new taxi trip inserted in the NYC taxi table. Note that updating the
index due to tuple insertion is deemed necessary to ensure the correctness of
future queries. This section compares the three indexing schemes after inserting
a certain amount of tuples in the NYC taxi table. We vary the number of inserted
tuples as ratio of the original data size, i.e., 0.0001%, 0.001%, 0.01% and 0.1%
tuples of the index NYC taxi table and insert them using the COPY FROM SQL
clause.

As depicted in Figure 10a, GiST-Spatial exhibits the highest index main-
tenance overhead when new tuples are inserted. That happens because GiST-
Spatial spends too much time on locating the proper tree node. Furthermore,

GiST-Spatial spends a non-ignorable amount of time on splitting the tree nodes
to accommodate the newly inserted key. Frequent tree structure traverse and
adjustments result in tremendous disk I/Os. Hippo-Spatial and BRIN-Spatial
exhibit more than two orders of magnitude less maintenance overhead for inser-
tion. That is due to the fact that both Hippo-Spatial and BRIN-Spatial possess
a flat index structure which is relatively less complex than GiST-Spatialand
hence easier to maintain. A newly inserted tuple leads to updating at most a
single index entry. On the other hand, Hippo-Spatial takes more time time to
insert a new tuple in contrast to BRIN-Spatial. That happens becuase Hippo-
Spatial checks each new tuple against the complete histogram and updates the
corresponding on-disk partial histogram if this new tuple hits a new distinct his-
togram bucket. On-disk updates happens more frequently in Hippo-Spatial since
BRIN-Spatial only does physical entry updates when the new tuple is outside
the corresponding MBR.

6.2 Deletion time

In this section, we evaluate the time PostgreSQL takes to maintain each of the
three tested index structures in response to deleting a tuple(s) from the NYC
taxi trip table. Similar to Section 6.1, we vary the percentage of deleted tuple
to take 0.0001%, 0.001%, 0.01% and 0.1% values.

As shown in Figure 10b, Hippo-Spatial achieves close to two orders of magni-
tude better performance than GiST-Spatial) in handling the DELETE operation.
For the sake of batch deletion, Hippo-Spatial re-summarizes an index entry that
contain many deleted tuples in one go meanwhile GiST-Spatial searches for the
affected tree nodes and sometimes merges the affected tree nodes in response
to tuple deletion. On the other hand, BRIN-Spatial follows a naive lazy update
strategy that rebuilds the entire index after a fixed number of tuples is deleted
from the indexed table. That explains why Hippo-Spatial achieves close to an or-
der of magnitude better performance BRIN-Spatial on low deletion percentages.
The performance gap slightly decreases when a large percentage of the table is
deleted because Hippo-Spatial has to re-summarize most index entries in that
case, which is equivalent to re-building the whole index.

6.3 Hybrid workload performance

Figure 11 compares the performance of three indexes in hybrid query/update
workloads. We generated five query / update workloads that vary the percent-
age of issued search operations as compared to the update operations, named
after the percentage of search operations in the entire workload: 10%, 30%, 50%,
70% and 90%. Each workload consists of a thousand operations, which represent
either index search or data update operations. In the experiments, we measure
the system throughput achieved for each workload. The throughput is measured
in terms of the number of operations per second. In each workload, the aver-
age spatial query selectivity factor is set to 0.01% while the average number of
updated tuples is set to 0.01%

Table 1: Summery of Results
Metric GiST-Spatial Hippo-Spatial BRIN-Spatial

Storage Overhead 84 GB 2 GB 10 MB

Initialization time 28 hours 30 minutes 45 minutes

Selectivity query !0.001% selectivity !selectivity between
0.01% and 1%

✗

Dense area query !10−5% range query
area

!range query area ≥
10−4%

✗

Index insertion 6 minutes for insert-
ing 10−4% data

4 seconds for insert-
ing 10−4% data

1 second for inserting
10−4% data

Index deletion 2 hours for deleting
10−4% data

2 min for deleting
10−4% data

Index rebuilt

Hybrid workload !Query-intensive !Balanced Workload
and Update-intensive

!Update-intensive

Fig. 11: Throughput

As it turns out in Figure 11,
GiST-Spatial yields the lowest system
throughput. That happens because
GiST-Spatial spends too much time
on index maintenance. BRIN-Spatial
works faster than GiST-Spatial due
to fast index maintenance although it
incurs high latency when performing
search operations. Hippo-Spatial con-
sistently achieves the highest system
throughput, as compared to BRIN-
Spatial and GiST-Spatial. That is ex-
plained by the fact that Hippo-Spatial exhibits better index maintenance perfor-
mance than GiST-Spatial and also exhibits a competitive query response time.
Although Hippo-Spatial is outperformed by BRIN-Spatial when performing in-
sertion operations, Hippo-Spatial still achieves higher throughput than BRIN-
Spatial given its relatively superior query execution performance and fast data
deletion operations. In summary, we can conclude that Hippo-Spatial and BRIN-
Spatial are more suitable for update-involved workloads while Hippo-Spatial
outperforms BRIN-Spatial due to better query response time and faster data
deletion.

7 Summary of Results

We summarize the results of the experimental evaluation as follows (see Table 1):

– Indexing overhead: Indexing overhead includes two factors: index storage
overhead and initialization time. Hippo-Spatial and BRIN-Spatial occupy

orders of magnitude smaller index size as compared to GiST-Spatial. In
addition, the index initialization time taken by the system to create GiST-
Spatial is two orders of magnitude higher than the others.

– Query response time: Hippo-Spatial is two orders of magnitude slower than
GiST-Spatial on very highly selective queries (selectivity factor ≤ 0.001%)
but still holds competitive query response time on queries with selectivity
fator between 0.01% and 0.1%. Another observation is that GiST-Spatial ex-
ecutes order of magnitude faster performance when executing spatial range
queries over very small area such as 10−5%. Also, Hippo-Spatial achieves
competitive query time on larger range query area such as 10−4% and
0.001%. BRIN-Spatial always exhibits a slow query execution performance
for all query area sizes.

– Index maintenance overhead: The data insertion time taken by Hippo-Spatial
is ten times more than the time take by BRIN-Spatial, yet still 10 times faster
than GiST-Spatial on all update percentages (0.0001% to 0.1%). Hippo-
Spatial deletion speed is more than an order of magnitude faster than
GiST-Spatial and 2-10 times faster than BRIN-Spatial. In hybrid work-
loads, Hippo-Spatial achieves two orders of magnitude higher throughput
than GiST-Spatial on update-intensive workloads (10%, 30% queries) while
GiST-Spatial has higher throughput on query-intensive workloads.

8 Key Insights and Learned Lessons

Through extensive experiments, we presented a comprehensive analysis of classic
and state-of-the-art spatial database indexing schemes supported in PostgreSQL,
GiST-Spatial, Hippo-Spatial and BRIN-Spatial. Below, we share our key insights
through the following learned lessons:

– Do not create GiST-Spatial (i.e., spatial tree index) when the
database system is deployed on a storage device with high $ per
GB. The storage overhead introduced by GiST-Spatial created over the
NYC taxi dataset is 84 GB (see Table 1), which is close to 50% of the orig-
inal data size. Note that the dollar cost increases dramatically when the
DBMS is deployed on modern storage devices (e.g., SSD and Non-Volatile-
Ram) since they are still more than an order of magnitude expensive than
classic Hard Disk Drives (HDDs). As per Amazon.com and NewEgg.com,
the dollar cost per storage unit for HDD and SSD are 0.04 and 1.4 $/GB,
respectively. Instead, the user may consider Hippo-Spatial and BRIN-Spatial
to reduce the overall storage cost since these indexes only occupy between
0.1 and 1 % as compared to the original dataset.

– Do not use BRIN-Spatial or Hippo-Spatial for Yelp-like applica-
tions. Applications like Yelp usually issue very highly selective spatial range
queries that retrieve point-of-interests (e.g., 0.001% range query selectivity)
and present them to the end-user. As per the experiments, GiST-Spatial
is deemed a perfect indexing scheme for Yelp-like applications given its su-
perior performance in executive highly selective spatial range queries (see

Table 1). Furthermore, spatial data (i.e., Point-of-Interests) in Yelp are not
dense. That is due to the fact that every longitude and latitude location on
the surface of the earth contains a few (usually one) Point-of-Interests (or
buildings).

– Use Hippo-Spatial for spatial analytics applications over dynamic
and dense spatial data. NASA constantly collects Earth science data
(e.g., weather, pollution, socioeconomic data) [7]. Earth science data is quite
dense and new data is inserted into the system on a daily basis. Furthermore,
since geospatial data in such applications is typically consumed as aggregate
visualizations (e.g., Heatmap, Cartogram), spatial range queries on such data
are not quite selective (selectivity factor between 0.1% and 1%) as in Yelp-
like applications. Having said that, Hippo-Spatial is deemed the perfect for
such data given: (1) its small storage footprint and low maintenance overhead
compared to GiST-Spatial and (2) its superior query execution performance
over selective queries and higher throughput compared to BRIN-Spatial.

References

1. New york city taxi and limousine commission.
http://www.nyc.gov/html/tlc/html/about/trip record data.html.

2. Paul M Aoki. Generalizing” search” in generalized search trees. In Data Engineer-
ing, 1998. Proceedings., 14th International Conference on, pages 380–389. IEEE,
1998.

3. Block range index. https://www.postgresql.org/docs/9.6/static/brin.html.
4. Postgis - spatial and geographic objects for postgresql. http://postgis.net.
5. Postgresql: a powerful, open source object-relational database system.

https://www.postgresql.org/.
6. Charles Bontempo and George Zagelow. The ibm data warehouse architecture.

The Communications of the ACM, 41(9):38–48, 1998.
7. Earth science data. https://earthdata.nasa.gov.
8. Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys, CSUR, 11(2):121–

137, 1979.
9. Antonio Corral, Michael Vassilakopoulos, and Yannis Manolopoulos. Algorithms

for Joining R-Trees and Linear Region Quadtrees. In Proceedings of the Interna-
tional Symposium on Advances in Spatial Databases, SSD, pages 251–269, 1999.

10. Raphael A. Finkel and Jon Louis Bentley. Quad trees: A Data Structure for
Retrieval of Composite Keys. Acta Informatica, 4(1):1–9, 1974.

11. Francesco Fusco, Marc Ph Stoecklin, and Michail Vlachos. Net-fli: on-the-fly com-
pression, archiving and indexing of streaming network traffic. The VLDB Journal,
3(1-2):1382–1393, 2010.

12. Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. Compressing relations
and indexes. In Proceedings of the International Conference on Data Engineering,

ICDE, pages 370–379. IEEE, 1998.
13. Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In

Proceedings of the ACM International Conference on Management of Data, SIG-

MOD, pages 47–57. ACM, 1984.
14. Joseph M Hellerstein. Generalized search tree. In Encyclopedia of Database Sys-

tems, pages 1222–1224. Springer, 2009.

15. Joseph M Hellerstein, Jeffrey F Naughton, and Avi Pfeffer. Generalized search

trees for database systems. September, 1995.
16. Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An Improved R-tree Using

Fractals. In Proceedings of the International Conference on Very Large Data Bases,

VLDB, September 1994.
17. Ibrahim Kamel, M. Khalil, and V. Kouramajian. Bulk Insertion in Dynamic R-

Trees. In Proc. of the Intl. Symp. on Spatial Data Handling, SDH, pages 31–42,
1996.

18. Marcel Kornacker, C Mohan, and Joseph M Hellerstein. Concurrency and recovery
in generalized search trees. In ACM SIGMOD Record, volume 26, pages 62–72.
ACM, 1997.

19. Mong-Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Keng Lik Teo. Sup-
porting Frequent Updates in R-Trees: A Bottom-Up Approach. In Proceedings of

the International Conference on Very Large Data Bases, VLDB, pages 608–619,
September 2003.

20. Hanan Samet and Robert E. Webber. Storing a Collection of Polygons using
Quadtrees. ACM Transactions on Graphics, TOG, 4(3):182–222, 1985.

21. Lefteris Sidirourgos and Martin L. Kersten. Column imprints: a secondary index
structure. In Proceedings of the ACM International Conference on Management
of Data, SIGMOD, pages 893–904. ACM, 2013.

22. Dominik Ślezak and Victoria Eastwood. Data warehouse technology by infobright.
In Proceedings of the ACM International Conference on Management of Data,
SIGMOD, pages 841–846. ACM, 2009.

23. Michael Stonebraker and Lawrence A Rowe. The design of postgres. In Proceedings
of the ACM International Conference on Management of Data, SIGMOD, pages
340–355. ACM, 1986.

24. Jamel Tayeb, Özgür Ulusoy, and Ouri Wolfson. A Quadtree-Based Dynamic At-
tribute Indexing Method. The Computer Journal, 41(3):185–200, 1998.

25. Ronald Weiss. A technical overview of the oracle exadata database machine and
exadata storage server. Oracle White Paper. Oracle Corporation, Redwood Shores,
2012.

26. X. Xu, Jiawei Han, and W. Lu. RT-Tree: An Improved R-Tree Indexing Structure
for Temporal Spatial Databases. In Proceeding of the International Symposium on
Spatial Data Handling, SSDH, pages 1040–1049, July 1990.

27. Jia Yu, Raha Moraffah, and Mohamed Sarwat. Hippo in action: Scalable indexing
of a billion new york city taxi trips and beyond. In Proceedings of the International
Conference on Data Engineering, ICDE, page To appear. IEEE, 2017.

28. Jia Yu and Mohamed Sarwat. Two birds, one stone: a fast, yet lightweight, index-
ing scheme for modern database systems. Proceedings of the VLDB Endowment,
10(4):385–396, 2016.

29. Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-
cpu cache compression. In Proceedings of the International Conference on Data
Engineering, ICDE, pages 59–59. IEEE, 2006.

