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Abstract—The volume of spatial data increases at a staggering
rate. This tutorial comprehensively studies how existing works
extend Apache Spark to uphold massive-scale spatial data.
During this 1.5 hour tutorial, we first provide a background
introduction of the characteristics of spatial data and the history
of distributed data management systems. A follow-up section
presents the common approaches used by the practitioners to
extend Spark and introduces the vital components in a generic
spatial data management system. The third, fourth and fifth
sections then discuss the ongoing efforts and experience in spatial-
temporal data, spatial data analytics and streaming spatial data,
respectively. The sixth part finally concludes this tutorial to help
the audience better grasp the overall content and points out
future research directions.

I. INTRODUCTION

The volume of spatial data increases at a staggering rate.
Such data includes earth science datasets, geotagged social
media, vehicle trajectories, and sensor measurements. Further-
more, everything we do on our mobile and wearable devices,
e.g., booking a taxi trip or making a dinner reservation, leaves
breadcrumbs of geospatial digital traces. Existing relational
DBMSs [22] support a variety of spatial data types, oper-
ators and index structures to process spatial operations but
most of them fail at scaling up. To tackle this issue and
scale out spatial operations, recent works, such as Spatial-
Hadoop [8]] and HadoopGIS [1]] for Hadoop MapReduce, have
harnessed distributed data management systems. Although
these approaches achieve high scalability, they still exhibit
slow run time performance and the user will not tolerate such
delays. Apache Spark, on the other hand, provides a novel in-
memory data abstraction called Resilient Distributed Datasets
(RDDs) [38]] to outperform existing models. Unfortunately, the
native Spark ecosystem does not offer spatial data types and
operations. Hence, there is a large body of research focusing
on extending Spark to handle spatial data, indexes and queries.

This tutorial is expected to deliver a comprehensive study
of how existing works incorporate Spark to uphold massive-
scale spatial data. We also want this tutorial to serve as
an introductory course that teaches the audience the basic
building blocks in a scalable spatial data management system
and the important design concerns based on our previous
experience [34], [35], [36], [37]. Several other systems in
Hadoop [10] and Flink [3] are also included to point out poten-
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tial research directions for Spark-based systems. We begin our
tutorial with a background introduction of the characteristics
of spatial data and the history of distributed data management
systems. A follow-up section presents common approaches
used by the practitioners to extend Spark and introduces
the vital components in a generic spatial data management
system. The third, fourth and fifth sections then discuss the
challenges and ongoing efforts in spatial-temporal data, spatial
data analytics and streaming spatial data, respectively. The
sixth part finally concludes this tutorial and points out future
research directions.

II. TUTORIAL OUTLINE

Figure [I| depicts the outline of this tutorial which consists of
six sections. During this 1.5-hour tutorial, we first motivate the
idea, then start from the generic spatial data systems on Spark,



TABLE I: Geospatial data management systems in Apache Spark

Spatial Approach | Spatial index- | Queries Optimization Temporal Streaming
data type ing attribute processing
GeoSpark 341, | Generic RDD, Two-level Range, Join, KNN Query  optimizer, | Not Not
1351, 1371 DataFrame| object serializer optimized optimized
Simba [32] Generic DataFrame| Two-level Range, Join, KNN, | Query optimizer Not Not
KNN join optimized optimized
LocationSpark [29] | Generic | DataFrame| Two-level Range, Join, KNN, | Query optimizer Not Not
KNN join optimized optimized
GeoMesa [112] Generic RDD, Global  grid | Range,Join - Not Not
DataFrame| file optimized optimized
Magellan [[17] Generic DataFrame| - Range,Join - Not Not
optimized optimized
SpatialSpark [33] | Generic | RDD Two-level Range, Join - - -
SparkGIS [[7] Generic RDD Two-level Range, Join, KNN Resource-aware - -
query rewriter
DST [31] Trajectory | DataFrame| Two-level Similarity search - Not Not
optimized optimized
DITA [27] Trajectory | DataFrame| Two-level Similarity join Query optimizer Not Not
optimized optimized
SciSpark [20] Satellite | RDD - Filter, Join - Not -
image optimized
GeoSparkViz [36] | Raster RDD - Range, Join, Overlay | - - -
map
Geotrellis [14] Raster RDD - Cropping, Warping, | - Not -
map Map algebra optimized
BinJoin [30] Generic RDD Local index | Join Query optimizer Optimized |-

and elaborate systems for specific spatial data and present
some real-world examples. All reviewed Spark-based systems
are listed in Table [

A. Section 1: The overview of big spatial data and Spark

The first section takes 10 minutes, as shown in Figure E}
We initiate our tutorial with real life spatial data use cases
and further explain the recent explosion of big spatial data.
We then go through spatial data support in existing distributed
data management systems, including MPI-GIS [24], Parallel
Secondo [[16], HadoopGIS [1], SpatialHadoop [8]], ESRI tools
for Hadoop [9l, Presto-Spatial [23], and MD-HBase [19].
Additionally, we illustrate some important concepts in Apache
Spark such as Resilient Distributed Dataset (RDD) [38] and
SQL [5] to explain why Spark outperforms state-of-art sys-
tems. Finally, we plan to show the performance differences
between the existing systems and Spark when used to perform
classic spatial operations (e.g., spatial range query and join
query) as reported in recent literature [32], [37], [21].

B. Section 2: Managing spatial data in Spark

The second section costs around 20 minutes. In this part, we
first explore the common approaches that are used to extend
Apache Spark for supporting generic spatial data. For the ease
of understanding, we put the existing approaches into two
categories, RDD-based and DataFrame-based, according to the
Spark components they connect. The RDD-based approaches
such as LocationSpark [29] and SpatialSpark [33|] directly
extend bare metal RDD in Spark and allow the users to
gain granular control over spatial operation execution plan.
DataFrame-based approaches such as Simba [32] and Magel-
lan [17] extend SparkSQL catalyst with customized spatial

query optimization. This approach hides the internal query
execution and allows users to draw declarative queries. Some
systems (e.g., GeoSpark [37] and GeoMesa [12]) provide
Spatial SQL interfaces [6], [L1] besides RDD and DataFrame.

We will then go through the basic components that play
important roles in building spatial data management systems
in Spark. We first describe how distributed spatial indexing is
done in Spark. The existing systems [32]], [37], [29] gener-
ally build two-level index structures: a global succinct index
with local tree indexes on each RDD partition. Second, we
will explore the techniques used to accelerate spatial query
processing in Spark. For example, GeoSpark [37] leverages
KDB-tree based spatial partitioning technique to avoid time-
consuming Spark default join mechanism while Simba [32]]
and GeoMesa [[12] use R-Tree partitioning instead. Location-
Spark [29] and Simba [32] support K Nearest Neighbor-Join
query which is totally not supported in Spark. These systems
also possess query optimizers to yield efficient execution plans.

In addition, we present some other components that are
critical for running such in-memory spatial data systems.
For instance, the customized spatial object serializer in
GeoSpark [37] compresses loose in-memory spatial objects
and indexes to dramatically decrease memory footprint of spa-
tial operations. Resource-aware query rewriter in SparkGIS [7]]
can automatically rewrite a spatial query that exceeds the
memory limitation of a Spark cluster to a batch of smaller
queries each of which can fully run in memory.

C. Section 3: Managing Spatial-Temporal Data in Spark

As given in Figure |l| the third section takes 15 minutes
to present research efforts on taming spatial-temporal data in
Spark. We start by explaining the characteristics of spatial-



temporal data and reveal the challenges [[15]]. This leads us to
describe the limitations of some existing work in Spark [12],
[31], [37]: their index structures or data partitioning techniques
do not take into account the temporal attribute so they can only
treat a temporal query predicate (e.g., find spatial objects occur
within a time interval) as a simple data filter.

We then explore several ongoing efforts [30], [2], [28] on in-
corporating temporal attributes, including Bin join [30] which
partitions spatial data in Spark according to spatial and tem-
poral proximity. Furthermore, we also review some works in
Hadoop MapReduce framework, such as ST-Hadoop [2] which
supports multi-layer spatial-temporal indexes and CloST [2§]
which partition spatial data based on temporal proximity, to
point out possible research directions.

Another important type of spatial-temporal data is trajecto-
ries. We present the limitations of generic spatial data systems
when performing queries on trajectories, such as extensive
overlapped spatial boundaries of RDD partitions, inaccurate
distance metrics and inefficient index structures. We will
also describe existing efforts for segment-oriented trajectory
partition methods (e.g., DFT [31]), Hausdorff/Frechet/DTW
distance metrics (e.g., DFT [31] and DITA [27]) and novel
trajectory indexes (e.g., DITA [27]).

D. Section 4: Geospatial Data Analytics in Spark

The fourth section will take another 15 minutes to demon-
strate how to perform geospatial analytics in Spark using
these spatial data systems. We will first go through the works
(e.g., SciSpark [20]], GeoSparkViz [36] and GeoTrellis [14])
on extending Spark to support spatial visual analytics which
generally produce raster map image and satellite image. To be
precise, each RDD partition in such systems is a self-contained
2D array dataset that includes some meta information describ-
ing the time and spatial location of this partition. We will
explain how this makes their system paradigms different from
other spatial data management systems in Spark and showcase
visual analytics examples including global climate changes
and traffic distribution.

Furthermore, we will direct the audience to run spatial
statistical analytics, such as spatial aggregation analytics and
spatial hot spot analysis, using one of the aforementioned big
spatial data systems (e.g., GeoSpark [37]). In addition, we will
also give two case studies about how to perform spatial data
mining and machine learning in Spark: (1) spatial regression
analysis (2) spatial co-location pattern mining. These real-
world examples are expected to help the audience better
understand how to apply these techniques to their research.

E. Section 5: Processing streaming spatial data in Spark

We will take another 15 minutes in Section 5 to discuss
the recent work of processing spatial streaming data in Spark.
The first part of this section will describe the structured
streaming in Spark [4] which provides a declarative DataFrame
SQL API to users. This part will further show how the
streaming component differs from the regular Spark RDD
and DataFrame API. We then describe the mechanism of
directly applying the existing generic Spark spatial systems to

streaming applications [37], [12]. We will explain why these
systems cannot yield the best performance although they can
more or less work with spatial streaming data.

Furthermore, we review a couple of ongoing efforts in other
relevant ecosystems such as Apache Flink [3] and Microsoft
SQL Server [18] to convey some insights of building a
distributed or centralized spatial streaming system. We hope
that this can guide practitioners to develop better systems in
Spark environment. This will cover some important topics
including how to perform incremental spatial analysis and
partition spatial data [26], event prediction [25] and query
refinement [13].

F. Wrap up and future directions

In the final session of the tutorial which lasts for 15 minutes,
we conclude the changes made by recent trends in extending
Spark to support spatial data and also introduce several im-
portant future research directions. Specifically, we reveal two
directions: (1) Exploring specific efficient algorithms and data
structures to process spatial-temporal and spatial streaming
data in Spark. (2) Developing efficient query optimization
strategies and Spark-specific optimization components to help
Spark Catalyst optimizer generate better distributed spatial
query execution plans.

III. INTENDED AUDIENCE AND DURATION

The tutorial bridges the gap between two broad areas
that are deemed quite necessary in the data science stack:
(1) Distributed in-memory computation engine Spark and
(2) Big spatial data. Hence, our tutorial targets mainly data
scientists, data management researchers / practitioners, and
data enthusiasts. The tutorial lasts for 1.5 hours (detailed
timing is given in Figures [T) and attending the tutorial does
not require any prior knowledge as it starts by giving a quick
overview of distributed data systems and big spatial data. By
attending the tutorial, the audience is expected to learn about
cutting-edge spatial data management techniques in Spark
and get more familiar with the state-of-the-art research (i.e.,
systems, tools, applications) that lies in the intersection of both
database systems and GIS. More specifically, data scientists
will learn how to tweak existing Spark-based systems in the
data science stack (i.e., spatial query execution and spatial data
mining) to minimize the data-to-insight time over massive-
scale data. Database researchers will benefit from the tutorial
since the presenters will describe a set of future research
directions in distributed spatial data management systems.
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