
GeoSparkViz: A Scalable Geospatial Data Visualization
Framework in the Apache Spark Ecosystem

Jia Yu
Arizona State University, Tempe AZ

jiayu2@asu.edu

Zongsi Zhang
Arizona State University, Tempe AZ

zzhan236@asu.edu

Mohamed Sarwat
Arizona State University, Tempe AZ

msarwat@asu.edu

ABSTRACT
Data Visualization allows users to summarize, analyze and rea-
son about data. A map visualization tool first loads the designated
geospatial data, processes the data and then applies themap visual-
ization effect. Guaranteeing detailed and accurate geospatial map
visualization (e.g., atmultiple zoom levels) requires extremely high-
resolution maps. Classic solutions suffer from limited computation
resources and hence take a tremendous amount of time to generate
maps for large-scale geospatial data.

The paper presents GeoSparkViz a large-scale geospatial map
visualization framework. GeoSparkViz extends a cluster comput-
ing system (Apache Spark in our case) to provide native support
for general cartographic design. The proposed system seamlessly
integrates with a Spark-based spatial data management system,
GeoSpark. It provides the data scientist a holistic system that al-
lows her to perform data management and visualization on spa-
tial data and reduces the overhead of loading the intermediate
spatial data generated during the data management phase to the
designated map visualization tool. GeoSparkViz also proposes a
map tile data partitioning method that achieves load balancing
for the map visualization workloads among all nodes in the clus-
ter. Extensive experiments show that GeoSparkViz can generate a
high-resolution (i.e., Gigapixel image) Heatmap of 1.7 billion Open-
StreetMaps objects and 1.3 billion NYC taxi trips in ≈4 and 5 min-
utes on a four-node commodity cluster, respectively.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies → Distributed algorithms; • Human-
centered computing → Visualization techniques;

KEYWORDS
Distributed computation, Spatial visualization, Big spatial data

ACM Reference Format:
Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2018. GeoSparkViz: A Scal-
able Geospatial Data Visualization Framework in the Apache Spark Ecosys-
tem. In SSDBM ’18: 30th International Conference on Scientific and Statisti-
cal Database Management, July 9–11, 2018, Bozen-Bolzano, Italy.ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3221269.3223040

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00
https://doi.org/10.1145/3221269.3223040

1 INTRODUCTION
Map Visualization allows users to summarize, analyze and reason
about geospatial data. For example, a heat map of the New York
City taxi trips helps the taxi company locate the hot pick-up and
drop-off zones. Also, a scatter plot of the United States road net-
work exposes isolated areas nationwide. A politician may utilize a
Choropleth map to visualize the Twitter sentiment of each presi-
dential candidate in each US county. To achieve that, a map visual-
ization tool first loads the designated spatial data and then applies
the map visualization effect, e.g., Heatmap, on such data. The sys-
tem first rasterizes the spatial objects, then aggregates overlapped
pixels, colorizes the map pixels, and finally renders an image for
each spatial map tile.

Guaranteeing detailed and accurate geospatial map visual-
ization (e.g., at multiple zoom levels) requires extremely high-
resolutionmaps. Classic solutions suffer from limited computation
resources and hence take a tremendous amount of time to gener-
ate maps for large-scale spatial data [19]. Moreover, the existing
systems that decouple spatial data management and map visual-
ization demand substantial overhead to connect the data process-
ing engine to the map visualization tool. To remedy that, it is es-
sential to combine both spatial data management and map visual-
ization in the same cluster. For instance, SpatialHadoop can store
the output of the spatial data management phase on HDFS then
HadoopViz [8] starts generating the map visualization effect. How-
ever, the MapReduce approach suffers from large delays due to the
need for storing intermediate results on HDFS. On the other hand,
state-of-the-art Spark-based spatial data processing systems (e.g.,
GeoSpark [26], SIMBA [24], LocationSpark [22], SparkGIS [3]) can
perform data management operations at scale but do not provide
in-house support for geospatial map visualization. Hence, such sys-
tems lose the opportunity to connect and optimize both data man-
agement and map visualization together.

The paper presents GeoSparkViz 1 a large-scale geospatial map
visualization framework. GeoSparkViz extends a massively par-
allelized cluster computing system (Apache Spark in our case) to
provide native support for general cartographic design and seam-
lessly integrates with a Spark-based spatial data management sys-
tem, GeoSpark [26]. Two benefits come as a byproduct of per-
forming the data management and map visualization process in
the same cluster: (1) It provides the data scientist a holistic system
that allows her to perform data management and visualization on
spatial data. That plug-and-play approach increases the usability
of the system. (2) It reduces the overhead of loading the interme-
diate spatial data generated during the data management phase to

1GeoSparkViz Github repository: https://github.com/DataSystemsLab/GeoSpark

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

the designated map visualization tool. In addition, GeoSparkViz
has the following main contributions:

• GeoSparkViz encapsulates the main steps of the geospa-
tial map visualization process, e.g., rasterize spatial objects,
aggregate pixels, into a set of massively parallelized RDD
transformations in Apache Spark. Such RDD transforma-
tions provide out-of-the-box support for the user to gener-
ate a variety of map visualization effects, e.g., scatter plot
and heat map, on RDDs. Furthermore, the user can cus-
tomize these visualization transformations to specify user-
supplied colors and even implement new RDD transforma-
tions to assemble a new map visualization effect. Most im-
portantly, GeoSparkViz integrates the map visualization
transformationswith existing RDD transformations/actions
(e.g., map, reduce, join, filter). To achieve that, the system
leverages both the spatial data distribution and the geospa-
tial map tile statistics to decide the sequence of operations
in the Spark DAG.

• GeoSparkViz also proposes a map tile-aware data partition-
ing method that achieves load balancing for the map visual-
izationworkloads among all nodes in the cluster. To achieve
that, the system draws a sample of the loaded spatial data
to figure out its spatial distribution and hence generate non-
uniform map tiles accordingly. The main goal is to partition
the data once and use such partitioning for the entire visual-
ization task in order to reduce the amount of data shuffled in
the Spark cluster. Besides partitioning, the system also repli-
cates a subset of the map pixels in order to avoid shuffling
data during the map visualization phase.

• A full-fledged prototype ofGeoSparkViz is implemented in
Apache Spark. The paper presents an extensive experimen-
tal evaluation that compares and contrasts the performance
of GeoSparkViz with state-of-the-art distributed map visu-
alization systems over real large-scale spatial data extracted
from the NYC taxi trip dataset, Open Street Maps and Topo-
logically Integrated Geographic Encoding and Referencing
(TIGER) project. The experiments show that GeoSparkViz
can achieve up to 5 times faster run time performance than
its counterparts for various map visualization workloads.

Given this outlook, the rest of the paper is organized as follows:
Section 2 presents the related work. An overview of GeoSparkViz
is given in Section 3. Section 4 illustrates the user interfaces in
GeoSparkViz and explains how to extend default visualization ef-
fects. The main map visualization steps are described in Section 5.
Sections 6 explains the map tile data partitioner. Several use case
scenarios are given in Section 7. A comprehensive experimental
evaluation is given in Section 8. Section 9 concludes the paper.

2 RELATED WORK
Geospatial map visualization: Many commercial map services
such as Google Maps and MapBox allow users to visualize a small
amount spatial data on a single machine. Other single machine so-
lutions [5, 9, 14] let user visualize large-scale data by downsizing
the spatial data (e.g. data sampling) but they are not able to provide
high-quality images when the user wants more details.

Apache Spark System: Apache Spark [21] is an in-memory
cluster computing system. Spark provides a novel data abstraction
called resilient distributed datasets (RDDs) that are collections of
objects partitioned across a cluster of machines. Each RDD is built
using parallelized transformations (filter, join or groupBy) that
could be traced back to recover the RDD data. The fault-tolerance
and job scheduler in Spark rely on Directed Acyclic Graph (DAG).
DAG in Apache Spark consists of vertexes and directed edges
where each vertex represents an RDD and an edge represents the
operation to be applied to an RDD. Every edge is directed from a
source RDD and a destination RDD. A DAG is divided into multi-
ple stages. Each stage contains a sequence of pipelined RDD trans-
formations and the boundaries of stages are shuffle operations in-
cluding Actions and some Transformations such as GroupByKey.
All transformations in a stage are pipelined together and launched
by the Spark DAG scheduler.

Scalable spatial data analytics systems: There exist efforts
that aim at extending state-of-the-art parallel and distributed data
systems as means to support massive-scale geospatial data pro-
cessing. Parallel SECONDO [13], Hadoop-GIS [1], and Spatial-
Hadoop [6] extend the Hadoop ecosystem to support global and
local spatial indexing and to achieve efficient query processing
over large-scale spatial data. SIMBA [24], LocationSpark [22],
SparkGIS [3] and GeoSpark [26] extend Apache Spark to support
SQL applications onGeospatial data types. Although the aforemen-
tioned systems can scale spatial data processing on a cluster, they
do not provide support for map visualization.

Scalable map visualization systems. There is a large body of
research that builds upon parallel / distributed system approach to
scale the visualization workflow [7, 8, 11, 12, 15, 18]. SHAHED [7]
and HadoopViz [8] use MapReduce to parallelize the map image
rendering pipelines such as scatter plot and heat map. However,
SHAHED and HadoopViz are not able to co-optimize the map vi-
sualization process with other distributed query processing opera-
tions. In such cases, the user has to load, process and store the inter-
mediate spatial data separately. GeoMesa [11] and Geotrellis [12]
extend Apache Spark to manipulate spatial objects and pixels but
they still cannot connect classic query processing operations and
map visualization. MapD [15] leverages the Graphic Processing
Unit (GPU) to parallelize and hence speed up queries and pixel ma-
nipulation in visualization but it is still limited to a single machine.

3 GEOSPARKVIZ ARCHITECTURE
As depicted in Figure 1, GeoSparkViz contains two main compo-
nents: (1) Map Visualization Pipeline (2) Map Tile Data Partitioner.
GeoSparkViz works in concert with the existing GeoSpark (Spa-
tial RDD layer and Spatial Query Processing Layer) to deliver a
one-stop in-memory cluster computation framework. The user is
able to perform visual analytics (Scatter Plot, Heat Map, Choro-
pleth Map) on his massive, yet interesting, geospatial data at a
lower time cost without getting involved into the underlying im-
plementation details.

3.1 Map Visualization Pipeline
GeoSparkViz breaks to pieces a general map visualization genera-
tion pipeline and parallelizes each piece, namely visualization step,

GeoSparkViz: Scalable Map Visualization in Spark SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Figure 1: GeoSparkViz Overview

in a cluster system. These decoupled steps offer flexibility to both
geospatial visualization experts and big data manipulators. On the
one hand, the user can easily pick proper visualization steps in
conjunction with GeoSpark Spatial RDD and spatial queries (ex-
plained later) to design new visual analytics pipeline which fits
him best. Actually, the use case scenarios in Section 7 exactly fol-
low this design mechanism. On the other hand, GeoSparkViz ex-
poses these visualization steps to the user using extensible APIs.
The user can easily override a step to implement new algorithms
or rules. For instance, the user can rewrite the colorizing operator
and put new coloring rules.

Step I: Rasterize spatial objects. This visualization step takes
as input the massive datasets from various data sources and the
designated image quality (in terms of pixel resolution). It then ras-
terizes/maps each spatial object (such as point, polygon and line
string) to pixels (positions on the screen coordinate system) in par-
allel. Each pixel in the produced dataset carries an attribute called
pixel weight which decides the color. To be precise, the output is a
pixel-weight pair RDD.

Step II: Aggregate overlapped pixels. This step aggregates
pixels that overlap with others to make sure each screen position
has a deterministic weight. For each position on the screen, it en-
forces an aggregation strategy on the weights of all pixels which
locate at this position to determine a final weight. GeoSparkViz
accepts several aggregation strategies such as uniform, min, max,
and average such that the finalized map can obtain different ef-
fects. In addition, this visualization step can apply classic image
filters such as sharp, blur or diffusion to the pixels’ weight (which
decides the color). This step produces a pixel-weight pair RDD.

Step III: Colorize map pixels. This visualization step assigns
colors to all pixels distributed in the cluster according to pixel

weights by enforcing the given coloring rule. Hence, it generates
a pixel-color pair RDD.

Step IV: Render map tile. This visualization step takes as in-
put the distributed pixel-color RDD, uses this RDD to render map
tiles, and finally generates a distributed map tile RDD.

Step V: Overlay multiple maps. This visualization step takes
as input multiple distributed map tile datasets and overlays them
one by one. For each map tile in a map tile dataset, this operator
looks for the corresponding tiles from other datasets across the
cluster and overlays them.

3.2 Map Tile-Aware Data Partitioner
The data partitioning component of the system uses a space parti-
tioning method to repartition a given pixel dataset across the clus-
ter. Pixels that fall inside a logical space partition go to the same
physical data partition and stay at the same machine. Therefore,
pixels on the same data partition can easily plot out a map tile of
this partition when rendering.

The partitioner accommodates the need for visual analytics but
also takes into account load balancing when processing skewed
geospatial data. On one hand, it makes sure that each data partition
contains a roughly similar number of pixels to avoid "stragglers" (a
machine that takes much more inputs than others so that performs
slowly). On the other hand, the logical space partition boundary of
each data partition is derived from a map tile space partition of the
final map so that data partitions that belong to the same tile space
are able to be stitched together and produce the tile.

3.3 Spatial RDD and spatial query
GeoSparkViz is built upon GeoSpark[26, 27], which is equipped
with an out-of-the-box Spatial Resilient Distributed Dataset (Spa-
tial RDD) to provide support for spatial data types, indexes, and
geometrical operations at scale. It also extends SparkSQL to offer
Spatial SQL interface that follows SQL/MM-Part 3 standard [2].

GeoSparkViz harnesses the Spatial RDD and spatial query oper-
ators, including range query, range join query, distance join query
and so on, from GeoSpark to process spatial data involved in a
geospatial visual analytics workload. The black-boxed Spatial RDD
and spatial query operators are able to exchange intermediate data
with other GeoSparkViz components such as map visualization
pipeline and map tile data partitioner immediately via memory.

4 GEOSPARKVIZ API
GeoSparkViz provides out-of-the-box support for three map visu-
alization effects, scatter plot, heat map and choropleth map. These
effects are presented to the user as Spark transformations to visu-
alize the given Spatial RDD and spatial query results. In addition,
GeoSparkViz is extensible so a user can simply extend a map vi-
sualization effect and embed her own visualization rule.

4.1 Create Spatial RDD and run spatial queries
GeoSparkViz takes as input any Spatial RDD and spatial queries
then visualize them in the same cluster. Therefore, before using
GeoSparkViz, the user should create corresponding RDDs for his
spatial data and execute several spatial queries, as follows:

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

val mySpatialRDD = new SpatialRDD(sc,inputPath,FileFormat.WKT)

val queryResult = Query.SpatialRangeQuery(mySpatialRDD,queryWindow)

He can create a Spatial RDD and issue a spatial range query on
the built RDD in just two lines of code. The user can either visualize
mySpatialRDD or queryResult because they both are Spatial RDD.

4.2 Create map visualization effects
Users can select an instance from the three map visualization ef-
fects. GeoSparkViz produces the effects using the same map visu-
alization pipeline but applies different rules such as rasterization
rules, aggregation strategies, and colorizing rules. The pre-defined
map visualization effects are as follows:

Scatter Plot.2 A scatter plot graph uses the spatial objects’ loca-
tion coordinates to plot pixel points. Each pixel is rendered to the
same uniform color. The patternmay reveal a relationship between
spatial objects and show trends in the data.

Heat Map. This effect consists of standard steps in the map vi-
sualization pipeline. Different from the scatter plot, the heat map
utilizes the aggregation strategies except Uniform to produce a col-
orful map. The color is decided by the weight of each pixel. The
user can also add an image filter to observe special effects.

Choropleth Map. consists of many different areas, which are
shaded or patterned in proportion to themeasurement of the statis-
tical metric being displayed on themap, such as population density
in different countries. The Choropleth map provides an easy way
to show the variability level of the metric within a region.

To plot an effect for Spatial RDD, the user first needs to create an
instance ofmap visualization effect and then callVisualize function
to plot a Spatial RDD. The APIs are as follows:

val myScatterPlot = new ScatterPlot (resolutionX, resolutionY, Rules)

val mapTileRDD = myScatterPlot.Visualize(mySpatialRDD)

As shown above, the Rules parameter is a configuration file
which specifies several visualization rules, including rasterization
rules, aggregation strategies, and colorizing rules (explained in Sec-
tion 5). In the file, the user can also specify that use non-spatial
attributes to decide the colors of the map (see Initial weight in Sec-
tion 5.1). The Visualize function produces a MapTile RDD which
consists of map tiles (each partition is a map tile). The user can ei-
ther persist this image to permanent storage such as disks / HDFS /
Amazon S3 or overlay this MapTile RDD with other MapTile RDD
(see Overlay in Section 5.5).

4.3 Define a custom map visualization effect
Besides the pre-defined map visualization effects and limited visu-
alization rules, GeoSparkViz users are free to extend the visual-
ization effect and assemble their custom map visualization effects
from scratch. To achieve that, GeoSparkViz provides an abstract
class called BaseEffect, which has four functions, as follows.

abstract class BaseEffect {

protected <Pixel,weight>RDD Rasterize (<Spatial object> RDD) {...}

protected <Pixel,weight>RDD PixelAggregate(<Pixel,weight>RDD) {...}

protected <Pixel,color>RDD Colorize(<Pixel,weight>RDD) {...}

protected <TileID,MapTile>RDD Render(<Pixel,color>RDD) {...}

2Demo video: http://www.public.asu.edu/~jiayu2/video/geosparkviz.mp4

Algorithm 1: Step I: Rasterize
Input: <Spatial object> RDD
Output: <Pixel, weight> pair RDD

1 Function Map(spatial object O)

2 weight = O ’s non-spatial attribute;

3 switch Rasterizing rule do
4 case "outline-only" do
5 Decompose O into line segments;
6 Find all pixels covered by line segments;
7 return <Pixel coordinate, weight>;

8 case "filling area" do
9 Find all pixels that are within the polygon boundary;

10 return <pixel coordinate, weight>;

public <TileID,MapTile>RDD Visualize(<Spatial object> RDD) {

Rasterize();
PixelAggregate();

Colorize();
Render();

}

}

As shown above, each function is a step in the map visualiza-
tion pipeline (explained in Section 5). Each function in the Base-
Effect already has its default logic. The user only needs to extend
this abstract class and override the function he wants to customize.
The user can write any code inside the new function as long as
the input and output follow the specified formats in the function
requirement. The Visualize function will then call the functions
in the given order to assemble the pipeline. For example, the user
wants to plot a heat map of land surface temperature but he wants
to inject a customized colorizing strategy: if a region is colder than
0 celsius degree, mark it as blue otherwise red. He only needs to
override the Colorize step and put his own logic:

Color =

{
Blue weiдht < 0

Red weiдht >= 0

5 MAP VISUALIZATION PIPELINE
This section details GeoSparkViz map visualization pipeline and
highlights the algorithms. GeoSparkViz encapsulates each step in
the general map visualization pipeline and implements the corre-
sponding logic in a Spark RDD Transformation. The user is not
aware of the underlying details and only focuses on designing the
analytics workload. Moreover, the user is able to override any visu-
alization step to support new algorithms (e.g., new coloring rules).

5.1 Rasterize
This step takes as input a Spatial RDD which contains numerous
spatial objects and the designated map pixel resolution then raster-
izes the spatial objects to pixels in parallel. GeoSparkViz is able to
accept various data sources such as persistent storage (e.g., AWS
S3 or HDFS) or intermediate data from spatial query operators.
Other visualization steps manipulate these pixels and eventually
plot them out on map tile images. To generate a map image, spa-
tial objects have to be rasterized to corresponding pixels. Like a
point object, each pixel also possesses a coordinate/position on
the screen coordinate system. Different from the spatial coordinate

GeoSparkViz: Scalable Map Visualization in Spark SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

system, the pixel’s x coordinate and y coordinate have to be inte-
gers. The number of pixels on this map is determined by the given
map resolution. Algorithm 1 depicts the detail of this operator.

X =
lonдitude − (−180)

180 − (−180)
∗width =

lonдitude + 180

360
∗width (1)

Y =
latitude − (−90)

90 − (−90)
∗ heiдht =

latitude + 90

180
∗ heiдht (2)

As shown in Algorithm1, this operator packages the rasteriza-
tion into a single Map operation.GeoSparkViz adopts two raster-
ization rules: (1) outline-only (Figure 2a): only marks pixels cov-
ered by spatial objects’ outlines; (2) filling area (Figure 2b): marks
all pixels covered by spatial objects.

Outline-only For the outline-only rule, GeoSparkViz first de-
composes the shape of spatial objects (points, polygons and line
strings) into line segments. It is worth noting that a point is just a
special line segment that has the same starting and ending vertexes.
For vertexes, we can easily project it to a pixel using Equation 1
and 2. Width and height that define the map resolution are in the
unit of pixels. After transforming the starting and ending vertexes
of a line segment, we take the renowned Bresenham’s line algo-
rithm to decide the pixel trace which is approximately close to the
line. Its basic idea is: from the starting vertex X position to the end-
ing vertex X position, this line algorithm increases the X by 1 and
takes the integer Y which is closest to the ideal (fractional) Y. Each
pixel covered by a certain object is turned to a <Pixel, weight>
pair in the <Pixel, weight> RDD, the result of the Map operation.
The weight indicates an aggregation value at this pixel coordinate
and it decides the color of this pixel. The initial value of the weight
is explained below.

Filling area If the user chooses the filling area rasterization
rule (only valid for polygons), we need to mark all pixels covered
by polygons. For each polygon in the dataset, GeoSparkViz first
transforms all vertexes to pixels, then locates pixels that fall inside
the rasterized polygonal boundary. All covered pixels are added to
the intermediate dataset in the format of <Pixel, weight> pairs.

Initial weight A spatial object can be rasterized to many pix-
els. It is also possible that the rasterize step produces many over-
lapped pixels (explained in the next section). The weight of each
pixel is used to indicate the aggregation value. The initial weight
in the <Pixel, weight> pair RDD has two possible choices de-
pending on the visualization effects. If the user just wants to plot
a map based on the spatial distribution of the dataset such as a
Scatter plot/Heat map of geo-tagged tweets, GeoSparkVizwill set
the initial weight of all elements to a uniform value. If the user
wants to plot a non-spatial attribute associated with spatial ob-
jects, GeoSparkViz will use the non-spatial attribute as the initial
weight of each Pixel. For example, in a scatter plot of land surface
temperatures, each geo-tagged thermal sensor has a temperature
observation. GeoSparkViz will use each observed temperature as
the initial weight.

Spark execution The Rasterize step runs a Spark Map opera-
tion on the input Spatial RDD. In Spark, it is called RDD Transfor-
mation with narrow dependency. It takes as input a single RDD
(<spatial object> RDD) and transforms each partition of this RDD

Algorithm 2: Step II: Pixel aggregate
Input: <Pixel, weight> pair RDD
Output: <Pixel, weight> pair RDD

1 Function MapPartition(a data partition P of the input dataset)
2 Create an empty <Pixel, weight> HashMap HM ;

3 foreach <pixel, weight> pair in P do
4 Find the current weight of this pixel in HM if it exists;

// Aggregation stratgey: min, max, count,

average, uniform

5 Aggregate the weight;
6 Create an empty <Pixel, weight> List L;
7 foreach <pixel, weight> pair Px in P do
8 nbPx ’s new weight =0;

9 foreach neighbor pixel nbPx within image filter radius do
10 nbPx ’s new weight = nbPx ’s new weight + Px ’s

weight*Px ’s impact factor on nbPx ;
11 Store <nbPx , new weight> in L

12 return L;

to a partition with pixels by using Algorithm 1. These new parti-
tions become the <pixel, weight> RDD. During the execution pe-
riod, Algorithm 1 happens on each partition of the input RDD at
the same time. The output RDD holds the same RDD structure of
the input and can be directly used in the next operation. This step
has no data shuffle and will be pipelined together with many other
no-shuffle operations by Spark DAG scheduler.

(a) Outline - Raster (b) Filling area - Raster

Figure 2: Rasterize vector objects to pixels

5.2 Pixel aggregate
The rasterize step may produce many overlapped pixels that are
located at the same position on the screen coordinate system. This
is because (1) some spatial objects overlap/intersect each other by
nature (2) the resolution of the final map is low so that many ob-
jects overlap/intersect each other at this resolution. Since each po-
sition on the map should only be associated with one pixel and
display the color of this pixel, GeoSparkViz should aggregate the
weight of the overlapped pixels and determine the final weight of
this pixel.

In order to gather overlapped and neighbor pixels to the
same RDD partition to produce map tiles based on partitions,
GeoSparkViz adopts a map tile data partitioner (see Section 6) to
repartition the <pixel, weight> pair RDD from the rasterize step.

After repartitioning the pair RDD, the pixel aggregate step uses
a MapPartition function to run a partition-wise algorithm (see Al-
gorithm 2). For each partition in the <pixel, weight> pair RDD,

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

Algorithm 2 traverses all pixels in this partition and puts every
pixel in a key-value hash map. The key is the pixel and the value
is the current weight of this pixel. When traversing the pixels, if a
pixel already exists in the hash map, Algorithm 2 will know this is
an overlapped pixel and use an aggregation strategy to update the
weight stored in the hash map.

GeoSparkViz provides several aggregation strategies to aggre-
gate overlapped pixels: (1) Min: keep theminimumweight of pixels
that locate at the same position (2) Max: similar toMin, but take the
maximum weight (3) Average: similar to Min, but take the average
weight (4) Count: instead of aggregating the weight, it only counts
the number of pixels that overlap at the position (5) Uniform: it al-
ways assigns a fixed weight to the pixel’s position no matter how
many pixels overlap each other here. It is worth noting that, the
first three strategies are used to visualize the non-spatial attribute
(i.e., land surface temperature) of spatial objects on the map and
the user will observe a colorful heat map. The last two strategies
are used to visualize the spatial distribution of the objects in a Spa-
tial RDD. The difference is that Count will show a heat map while
Uniform prints a scatter plot which only has a single color.

Moreover, GeoSparkViz provides an optional function called
image filter to add an extra visual effect on the final map tiles. An
image filter, such as sharp, blur or diffusion, modifies the images
by absorbing part of the available light and forcing longer expo-
sure. For instance, images with Gaussian Blur show gradient col-
ors. This is widely adopted in geospatial visual analytics. In digital
photography, people normally use convolution matrixes to simu-
late the effects offilters. Its basic idea is, for a pixel in the image, add
the colors from its local neighbors, weighted by the matrix, to this
pixel. Each convolution matrix describes a (2*Radius+1) by (2*Ra-
dius+1) 2D array in which each individual element (Impact Factor)
indicates how strong the center pixel’s color impacts / is impacted
by the corresponding neighbor pixel’s new color. Figure 3 depicts
the convolution matrix of Gaussian Blur (dark color means high
impact and vice versa).

Figure 3: Gaussian Blur convolution matrix

After GeoSparkViz aggregates the weights of overlapped pix-
els, as an optional function, the image filter operator applies clas-
sic image filters to <pixel, weight> pair RDD so that the generated
map tile images may obtain some special effects. Since the color of
a pixel in GeoSparkViz is derived from the pixel’s weight, this
image filter works on pixels’ weights directly. In other words, the
weight of each pixel in the <pixel, weight> pair RDD is recom-
puted in accordance with a given convolution matrix in parallel.

Eventually, each pixel’s weight will be updated as follows:

Weiдht =
Pixels in radius∑

i=a pixel

i ′s I F ∗ i ′s weiдht (3)

As mentioned in the aggregation part, GeoSparkViz has repar-
titioned the <pixel, weight> pair RDD. Thus, neighbor pixels have
been partitioned to the same partition. For a small portion of those
pixels, themap tile data partitioner duplicates their neighbor pixels
as buffer pixels in order to totally avoid the neighbor pixel search
across the cluster.

In the repartitioned <pixel, weight> RDD, the algorithm loops
over each pixel (denoted as cursor pixel) except buffer pixels and
recalculates the pixel’s weight according to its neighbor pixels’
weights using Equation 3 (shown in Algorithm 2): for each pixel
within its filter radius (decided by the convolution matrix), this al-
gorithm sums up the products of this pixel’s Impact Factor and
weight (recall that the weights are stored in a hash map for con-
stant retrieval time). Then it uses the sum as the new weight of the
cursor pixel. All updated pixels’ weights are stored in a new list.

Spark execution The Pixel aggregate step runs a Spark Map-
Partition operation on the input <pixel, weight> RDD. As a RDD
Transformation with narrow dependency, it transforms each par-
tition a single input RDD to a new partition by using Algorithm 2.
This operation doesn’t introduce any data shuffle across the clus-
ter but GeoSparkViz needs to repartition the data before this step
(see Section 6). This repartitioning yields a shuffle and Spark DAG
scheduler then divides the Rasterize and Pixel aggregate to two
separated stages.

5.3 Colorize
After finalizing the weight of each pixel, the colorize step decides
a proper color for each pixel according to the weight. Colors be-
come visible to the user when rendering the map. The relation
between a color and a weight is defined by a mathematical equa-
tion (The weight needs to be normalized to [0, 255] RGB channel).
GeoSparkViz plugs this equation into aMap function and executes
it in parallel. The user can either provide his own equation or use
GeoSparkViz default equation. Two equation types are common:
(1) Linear equation (GeoSparkViz default). For example,

Color (R,G, B) = Color (255, 255, weiдht) (4)

This equation will give the user a colorful image with white high-
lights. (2) Piecewise equation. For instance,

Color =

⎧⎪⎪⎨

⎪⎪
⎩

Yellow weiдht ∈ [0, 100)

Pink weiдht ∈ [100, 200)

Red weiдht ∈ [200, 255]

The user will see a three-color image by using this equation. After
performing this operator, the weight in <Pixel, weight> pair RDD
becomes an RGB color value.

Spark execution The Colorize step performs a Spark Map op-
eration on the input <pixel, weight> RDD. Similar to the Rasterize
and Pixel aggregate steps, the Colorize step transforms the input
RDD to <pixel, color> RDD by running the algorithm above on
each partition in parallel. This operation can be pipelined with the
other no-shuffle operations as well.

GeoSparkViz: Scalable Map Visualization in Spark SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Figure 4: GeoSparkVizmap visualization pipeline (in DAG)

Algorithm 3: Step IV: Render
Input: <Pixel, color> pair RDD
Output: <Tile ID, Image tile> pair RDD

1 Function MapPartition(a partition P of the input dataset)
2 Retrieve the tile ID ID ;
3 Create a blank sub map tile SubT ile using the tile’s

resolution;
4 foreach Pixel Px in P do
5 Plot Px on SubT ile using Px ’s color;
6 return < ID, SubT ile >;
7 Function ReduceByKey(SubT ile1, SubT ile2)

/* SubT ile1 and SubT ile2 have the same Tile ID */

8 Merge the two sub map tiles to one map tile T ILE ;
9 return < ID, T ILE >;

5.4 Render
This render step takes as input the <Pixel, color> RDD and gener-
ates a distributed map tile RDD. Algorithm 3 describes the details.
Since we know pixels have been repartitioned by the map tile data
partitioner according to their proximity, it is easy to generate a
map tile on each data partition via a simple Map operation. The
new map tile of each data partition has a map tile ID and some
map tiles, called sub-tiles, from different data partitions may have
the same tile ID because the data in these partitions is a portion of
the same map tile (see Section 6). To recover those chopped map
tiles, this step uses the tile ID as the key and executes a Reduce-
ByKey on data partitions. This groups sub-tiles that have the same
tile ID together then merges them into one map tile. Eventually,
all chopped map tiles are recovered in parallel and the user can
persist the generated distributed <Tile ID, map tile> RDD to exter-
nal storage devices. This ReduceByKey only leads to a small scale
data shuffle because only a few map tiles are chopped by the map
tile data partitioner. After persisting the data, the map tiles can be
stitched together according to their map tile ID if necessary.

Spark execution The Render step performs a Spark MapParti-
tion operation and a ReduceByKey operation on the input <pixel,
color> RDD. In the first operation, for each input RDD partition, it
transforms all pixels in this partition to a map tile image. In other

words, it materializes the map tiles shown in the third level of Fig-
ure 5a. In the second operation, it transforms the sub-tiles to their
original map tiles shown in the first level of Figure 5a. From the
DAG’s perspective, both operations are RDD Transformation with
narrow dependencies. However, the latter operation introduces a
small data shuffle which is the stage boundary because it merges
some partitions together.

5.5 Overlay
The user may also need to overlay multiple map layers such as
transport map layer or county boundary layer on top of the base
map image for analytics purposes. For instance, the user may want
to overlay a taxi trip pick up point heat map with the area land-
marks in New York City to understand why some regions attract
much more taxis. This overlay step takes as input two <Tile ID,
map tile> RDDs and overlays them one by one in the order speci-
fied by the user. This step first leverages ReduceByKey operation on
two input RDDs (a front map RDD and a back map RDD) with the
tile ID as the key so that two map tiles from two RDDs are shuffled
together across the cluster. Then this step merges together the two
tiles which all describe the same area of the overall map. During
this process, the overlay step makes sure that the map tile from
the front image dataset stands in the front. This step generates a
new <Tile ID, map tile> dataset which can be persisted to external
storage devices or continue to overlay with another <Tile ID, map
tile> dataset.

Spark execution The Overlay step performs a Spark Reduce-
ByKey operation on the two input <Tile ID, map tile> RDDs and
produces a single <Tile ID, map tile> RDDs. In Spark, this is a
typical RDD Transformation with wide dependency and leads to a
tremendous data shuffle as well as the stage boundary.

5.6 Overall Directed Acyclic Graph (DAG)
As we mentioned in Section 2, the job scheduler in Spark relies
on the Directed Acyclic Graph (DAG). Any RDDs as well as their
Actions and Transformations are elements in a DAG, which even-
tually affects the Spark application’s performance in terms of exe-
cution time, memory consumption and network pressure.

Figure 4 illustrates a common map visualization pipeline in
GeoSparkViz: the user issues a spatial join query on taxi pickup

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

Figure 5: Spatial partitioning approaches

points and area landmarks’ polygonal boundaries to select the taxi
trips picked up in some area landmarks. The selected taxi trip
pickup points are plotted on a heat map using Rasterize, Pixel ag-
gregate, Colorize and Render steps. Each step shown in Figure 4 is
a transformation which produces a new RDD. The produced RDD
is a vertex in the DAG and each step is an edge. GeoSpark [26]
runs a spatial join query in three transformations: repartition, lo-
cal join (map), and duplicates removal. Two data shuffles occur af-
ter repartitioning and local joining, respectively. This leads to the
boundaries of DAG Stage 1 and 2.

GeoSparkViz completes the map visualization pipeline using
four transformations: Rasterize (Map operation), Pixel aggregate
(Map operation), Colorize (Map operation), Render (Map opera-
tion). A data shuffle occurs after Rasterize step because of the
map tile data partitioner (explained in Section 6). This leads to
the boundary between Stage 3 and Stage 4. It is worth noting
that, Stage 3 includes the transformations from GeoSpark Spatial
Join Query and GeoSparkVizmap visualization. This means these
two transformations are pipelined together and run together such
that there is no need to transfer the intermediate RDD across the
cluster. Moreover, although Stage 4 contains several transforma-
tions, these transformations (all Map operations) can be pipelined
together and executed faster.

6 MAP TILE-AWARE DATA PARTITIONER
Existing spatial partitioning approaches, such as R-Tree and Quad-
Tree, exhibit good performance when executing spatial queries for
the data preparation phase [24, 26]. However, these approaches do
not consider the fact that the final output of the map visualiza-
tion task will be eventually presented on a set of uniform map tile
images (see Figure 5c). In other words, existing spatial partition-
ing techniques ignore the map tile boundaries and hence are not
able to optimize the visualization operators that process pixels and
produce map tiles. On the other hand, partitioning the workload
based on the uniformmap tiles demands less partitioning overhead.
That also avoids the tedious process of recovering the map tiles to
be visualized using existing map visualization tools. However, the
uniform grid partitioning approach cannot handle the spatial data

skewness and hence fails at balancing the workload among the
cluster nodes (see Figure 5b).

The map tile data partitioner proposed by GeoSparkViz takes
as input a set of pixels and finally returns the tile boundaries of
determined data partitions. Each input pixels possesses a tile ID
that indicates the uniform map tile where this pixel lies in. While
enforcing the spatial proximity constraint, pixels assigned to the
same partition should also belong to the same map tile image. In
other words, all pixels in a data partition should have the same
map tile ID. To determine the partitions, the partitioner employs a
three-step algorithm:

Step I: Spatial Data Sampling: This step draws a random sam-
ple from the input spatial dataset and uses it as a representative
set in order to diminish the data scale. Geometrical boundaries of
every finalized data partition will be applied again to the entire
dataset and make sure all pixels are assigned to partitions.

Step II: Tile-aware Data Partitioning: As shown in Figure 5,
this step first splits the space into n

2 uniform map tiles (where n
is the number of segments on longitude/latitude) which represent
the initial geometrical boundaries for data partitions. Starting from
the initial tiles, the partitioner repartitions each tile in a Top-down
fashion. Similar to a Quad-Tree, the partitioning algorithm recur-
sively splits a full tile quadrant space into four sub-tiles if a tile still
contains too many pixels. As the splitting goes on, tile boundaries
becomemore and more non-uniform, but load balanced.When the
splitting stops (reach the maximum tile splitting level L, given by
the user), the leaf level sub-tiles become the geometrical bound-
aries for the physical data partitions (see the last level in Figure 5).
Eventually, this step builds a small quad-tree for each tile.

Step III: Physical Partitioning: This step passes the partition
structure (Figure 5) stored in the master machine to all machines
in the cluster. For every pixel, the map tile data partitioner first
decides the uniform map tile that it belongs to. Then, this step
searches the corresponding Quad-tree in a top-down fashion and
stops at a sub-tile boundary that fully covers the pixels. If the
search algorithm stops at a leaf-level sub-tile, the pixel is assigned
to the corresponding partition. If the search stops at a non-leaf sub-
tile (i.e., given a large polygon as input), the pixel is assigned to all
leaf-level sub-tiles under this non-leaf sub-tile. Eventually, pixels
or pixels that fall in the same leaf-level sub-tiles are physically lo-
cated in the same cluster node.

Note that the three steps run sequentially and each step runs on
a distributed pixel RDD in parallel.

7 USE CASE SCENARIO
This section uses three real use cases to illustrate the map visual-
ization effects offered by GeoSparkViz, as follows:

USA Mainland Rails Scatter Plot GeoSparkViz is able to
plot Spatial RDDs, PointRDD, RectangleRDD, PolygonRDD and
LineStringRDD, which cover most spatial objects, to scatter plots.
A scatter plot consists of four map visualization steps, rasterizing,
pixel aggregate, colorizing and rendering. As described in Figure 6,
GeoSparkViz scatter plot effect plots all rails within USA main-
land to a rail network map with different zoom levels. This rail
dataset published by US Census Bureau contains 181 million line
strings and each line string object represents a complete real rail

GeoSparkViz: Scalable Map Visualization in Spark SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Figure 6: USA mainland rails scatter plot

Figure 7: Taxi trips pickup point heat map

that consists of multiple line segments. GeoSparkViz loads this
dataset into a LineStringRDD and easily customizes/generates this
scatter plot. The user can ask GeoSparkViz to plot maps for sev-
eral different zoom levels [17].

NYC Taxi Trips Heat Map GeoSparkViz heat map effect is
produced by the same map visualization pipeline. Figure 7 shows
a heat map of a 260 Gigabytes dataset of NYC Yellow Cab and
Green Taxi trips, abbr. NYC Taxi [16]. The dataset contains de-
tailed records of over 1.1 billion individual taxi trips in the city
from January 2009 through June 2015. Each record includes pick-
up and drop-off dates/times, pick-up and drop-off precise location
coordinates, trip distances, itemized fares, payment method, and
travel distance. GeoSparkViz represents the pickup and drop-off
locations as a PointRDD and passes it to the heat map effect.

USA Tweets Distribution Choropleth Map A choropleth
map provides an easy way to show the variability level of the
metric within a region. One way to get the raw data of a choro-
pleth map is: (1) Perform a spatial join query between regions and

Figure 8: Create a choropleth map in Spark scala shell

POIs to get the result set with this schema: <Region, POIs list>. (2)
Count the POIs in each region to get a result set with this schema:
<Region, Count>. For a plotted geospatial region, the count of
POIs within this region represents the object density of filling pix-
els. Therefore, the color in each plotted region is in proportion to
the number of POIs in this region. The darker color means more
POIs and vice versa.

GeoSparkViz choropleth map effect leverages the same map vi-
sualization pipeline in the heat map and uses an extra overlaying
step to add region boundaries. This effect takes as input a spatial
join query result, between any Spatial RDD (e.g., PointRDD) and
a PolygonRDD, and directly generates the choropleth map. Fig-
ure 8 shows a choropleth map that reflects USA mainland Twitter
tweets distribution in county unit. This Twitter dataset includes
10 million geo-tagged tweets that span the entire USA mainland.
The filling color of a plotted USA county (region) is in propor-
tion to the number of tweets in this county. GeoSparkViz treats
USA county boundary outlines as a PolygonRDD and the Twitter
dataset as a PointRDD, calls GeoSpark APIs to join these two Spa-
tial RDD together and visualizes the spatial join query result to a
map. The user can easily build this map from scratch by typing
in the code (Figure 8) in Spark Scala shell and view the generated
map in browser.

8 EXPERIMENTS
In this section, we conduct a comprehensive experimental evalu-
ation of GeoSparkViz. We use six real spatial datasets in the ex-
periments (see Table 1): (1) TIGER Area Landmarks: 130,000 polyg-
onal boundaries of all area landmarks (i.e., hospitals, airports) col-
lected by U.S. Census Bureau TIGER project. (2) OpenStreetMap
Postal Area Dataset: 170,000 polygonal boundaries of postal areas
(major cities) on the planet. Each polygon in this dataset is repre-
sented by 10 ormore vertexes. (3) TIGER Roads: includes the shapes

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

Dataset Records Size Description

TIGER Area Landmarks 130 thousand 140 MB Polygonal Boundaries of
area landmarks in US

OSM Postal Codes 171 thousand 1.4 GB
Polygonal Boundaries of
postal areas (major cities)
in the world

TIGER Roads 20 million 7.7 GB Line string shapes of all
roads in the world

TIGER Edges 73 million 23 GB
Line string shapes of all
rivers, roads, rails in US

NYC Taxi 1.3 billion 219 GB
New York City taxi trip
pickup points

OSM Point 1.7 billion 63 GB All points in the world

Table 1: Test datasets

of 20 million roads in US. Each road is represented in the format
of a line string which is internally composed of many connected
line segments. (4) TIGER Edges: contains the shapes of 73 million
edges (i.e., roads, rivers, rails) in US. Each edge shape is represented
by a line string which has connected line segments. (5) New York
Taxi [25]: contains 1.3 billion New York City taxi trip records from
January 2009 through December 2016. Each record includes pick-
up and drop-off dates/times, pick-up and drop-off location coordi-
nates, trip distances, itemized fares, and payment method. But we
only use the pickup point coordinates in the experiments. (6)Open-
StreetMap Point: contains 1.7 billion spatial points on the planet,
e.g., boundary vertices of attractions and road traces.

Cluster settings. We conduct the experiments on a cluster
which has one master node and two worker nodes. Each machine
has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz per core),
100 GB memory, and 4 TB HDD. We also install Apache Hadoop
2.6, Apache Spark 2.11, HadoopVIz 2.4, and GeoSparkViz 1.0.

Compared approaches. In order to carefully investigate
the map visualization performance, we compare the follow-
ing approaches on generating scatter plot and heat map: (1)
GeoSparkViz: This approach is the full GeoSparkViz system
which fully employs map visualization pipeline and map tile data
partitioner. (2) HadoopViz: this approach is SpatialHadoop and its
visualization extension, namely HadoopViz. Intermediate data in
this approach is transferred through disk. By default, we use Open-
StreetMap standard zoom level 6 [17] as the default map visualiza-
tion setting for all compared approaches: it requires 4096 map tiles
(256*256 pixels per tile), 268 million pixels in total. The maximum
tile splitting level in GeoSparkViz map tile data partitioner is 3,
which means each map tile is split at most 3 times.

8.1 Impact of Spatial Partitioning
In this section, we compare four different spatial data partition-
ing approaches, GeoSparkViz map tile data partitioning, uni-
form grid partitioning, Quad-Tree spatial partitioning and R-Tree
partitioning. All these partitioning methods are implemented in
GeoSparkViz. The workload directly performs the scatter plot ef-
fects on the entire spatial datasets. For GeoSparkViz partitioner,
we also vary the maximum tile splitting level parameter (i.e., Level
1, 2, and 3).

Figure 9: Performance of data partitioners

As shown in Figure 9, GeoSparkViz scatter plot with map tile
data partitioner run 1.5X - 2X faster than the uniform grid par-
titioning method as expected. This is because the uniform grid
partitioning approach does not balance the load among the clus-
ter nodes. That degrades the performance more when the spatial
dataset is very skewed. Moreover, a visualization task with larger
GeoSparkViz max tile splitting level runs 15% faster than its vari-
ant with the lower splitting level. That happens since the map
tile partitioner can produce more balanced data partitions when
it keeps splitting tiles (until reaching the minimum data partition
boundary). Furthermore, the Quad-Tree and R-Tree partitioning
approaches are 50% - 70% slower than other partitioning methods
because such partitioning methods do not consider the map tile
sizes and hence the system has to add an extra step to recover the
map tiles before rendering. Themap tile recovery step assigns each
pixel a TileID and groups pixels by their TileID. This step leads to
an additional data shuffling operations to group pixels.

Figure 10: Scatter plot and heat map on different cores

8.2 Effect of Cluster Size
To demonstrate the scalability of GeoSparkViz, we evaluate its
performance on different cluster settings. In the first part of the
experiments, we vary the total number of CPU cores in a 2-node
cluster to be 6 cores, 12 cores and 24 cores. In addition, we only
change the cores registered in Apache Spark without changing the
number of workers such that each CPU core setting still runs on
the same 2-node cluster. In the second part of the experiments, we
vary the number of nodes in the Spark cluster to be 1 node, 2 nodes,

GeoSparkViz: Scalable Map Visualization in Spark SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

3 nodes and 4 nodes. Every machine utilizes its full computation
power, which consists of 12 CPU cores so the total CPU cores in
the corresponding clusters are 12 cores, 24 cores, 36 cores and 48
cores. Note that we could not run experiments for the NYCtaxi
and OSMpoint datasets on a single node due to their large sizes
compared to the memory size on a single node.

As depicted in Figure 10, the run time cost of GeoSparkViz in-
creases as we decrease the number of cores in the cluster. That
makes sense due to the fact that a larger cluster (more CPU cores)
can processmore tasks in parallel. On the other hand, we run all ex-
periments on four main datasets, Roads, Edges, NYCtaxi and OSM-
point (see Figure 10. The latter two datasets have over 1 billion

Figure 11: Scatter plot and heat map on different machines

records, which is about 30 times larger than Edges and 70 times
larger than Roads. The experiments also show that the time spent
on relatviely large-scale datasets (NYCtaxi and OSMpoint) is only
close to an order of magnitude (instead of 30 -70 times) higher than
that on smaller datasets. That makes sense because although the
small datasets have much fewer records, their internal objects are
line strings, which contain multiple line segments. Processing line
strings including checking spatial query predicate and rasteriza-
tion take more time due to their complex geometrical shapes.

As shown in Figure 11, the execution time decreases with the
growth of the number of machines in the cluster. We observe the
same pattern when running the experiments for both scatter plot
and heat map visualization effects. However, the execution time
exhibits a sub-linear correlation with the number of machines. For
example, the execution time on the 4-node cluster is 1.5 times (not
2 times) less than that on the 2-node cluster. This is because adding
more machines to the Spark cluster does not just simply increase
the computation power but also introduces a side effect: more data
shuffle read across the cluster machines. More data shuffled across
the network may significantly slow down the performance. For ex-
ample, based on the experiments, the NYCtaxi scatter plot genera-
tion on the 4-node cluster leads to approximately 7.2 GB data sent
across the network. The same visualization effect running on the
2-node/3-node cluster only leads to 4.7 GB and 5.9 GB transferred
across the network, respectively

8.3 Impact of Map Zoom Level
Figure 12 studies the impact of different map zoom levels on
GeoSparkViz. We use OpenStreetMap standard zoom level as our

criteria. Higher zoom level means that GeoSparkViz produces
more map tiles. We use 256*256 pixel resolution for each map tile
and vary the zoom level to be L2, L4 and L6. OSM zoom level 2
has 64 tiles, 1 million pixels; level 4 stands for 256 tiles, 16 million
pixels; level 6 demands 4096 tiles, 256 million pixels. We produce
scatter plots map visualization on four datasets.

Figure 12: Impact of map zoom levels

As shown in Figure 12, the higher the zoom level, the more time
GeoSparkViz takes to execute the map visualization. That makes
sense because, with smaller zoom levels, GeoSparkViz only gen-
erates low-resolution maps. In that case, the rasterization, pixel ag-
gregate, colorizing and rendering operators process fewer pixels.

8.4 Comparing GeoSparkViz and HadoopViz
Impact of the visualization effect. we first study the per-
formance of the map visualization workload. We run both the
Heatmap and Scatterplot visualization effects on GeoSparkViz

and HadoopViz approaches. The experiment also involves four
datasets with different scales.

Figure 13: Performance of scatter plot and heat map

As shown in Figure 13, GeoSparkViz is 3-4 times faster
than HadoopViz for generating scatter plot visualization. The re-
sult makes sense because: (1) The map tile data partitioner in
GeoSparkViz is more load-balanced than the uniform partitioning
adopted by HadoopViz. The uniform partitioning repartitions the
space to uniform grids and does not take into account data skew-
ness. (2) In contrast to GeoSparkViz, HadoopViz reads/writes in-
termediate data on disk. On small datasets like Roads and Edges,
GeoSparkViz is around 8 times faster than HadoopViz because
GeoSparkViz can process all intermediate data in memory.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Jia Yu, Zongsi Zhang, and Mohamed Sarwat

When generating the heat map visualization effect (see Fig-
ure 13), GeoSparkViz is also around 3-4 times faster than Hadoop.
Generating the heat map visualization effect takes 20% more time
than generating a scatter plot because generating heat map effect
needs to apply an image processing filter to colors in the Render
operator and this leads to more local iterations on each partition.

Impact of the visualization window size. This section also
studies the impact of varying the visualization window size. We
use the NYCtaxi dataset but vary the spatial range window size
to cover different area sizes in NYC. The smallest query window
area is the center of New York City region. We keep multiplying
this area by 4 and generate another three query windows, 4*Area,
16*Area, 64*Area. The biggest query window is the actual size of
the entire New York City region.

Figure 14: Impact of data scale

As shown in Figure 14, the execution time of the compared
approaches increases with the growth of the data size. However,
HadoopViz costs more time on larger query area while the time
cost of GeoSparkViz increases slowly. On the largest query area,
64*Area, GeoSparkViz is around 5 times faster than HadoopViz.
This makes sense because GeoSparkViz pipelines multiple trans-
formations, Rasterize, Pixel aggregate, Colorize and Render, to-
gether and all intermediate data is transferred through memory.
In addition, GeoSparkViz’s map tile data partitioner is more load
balanced than the data partitioner in HadoopViz which is the uni-
form grid data partitioner.

9 CONCLUSION
In this paper, we presented GeoSparkViz, a map visualization sys-
tem for massive-scale spatial data. The proposed approach pushes
the spatial map visualization functionality inside the core engine
of Apache Spark. The system comes with a set of optimized out-of-
the-box implementation of popular map visualization effects (e.g.,
Scatter Plat, Heat Map). That way, GeoSparkViz provides the data
scientist a holistic system that allows her to load, prepare, inte-
grate, visualize big spatial data in Spark. The experiments show
that GeoSparkViz can generate a high-resolution (i.e., Gigapixel
image) six zoom levels Heatmap of 1.7 billion Open Street Maps
objects and 1.3 billion NYC taxi trips in ≈4 and 5 minutes on a four-
node commodity cluster, respectively. In the future, we also plan to
integrateGeoSparkVizwith recently developed declarative visual-
ization languages (e.g., [10, 20]) as well as sampling-based systems

(e.g., ScalaR [4], RS-Tree [23]) to support interactive map visualiza-
tion operations (e.g., Zoom-In/out).

10 ACKNOWLEDGMENT
This work is supported in part by the National Science Foundation
(NSF) under Grant 1654861, the Salt River Project Agricultural Im-
provement and Power District (SRP), and theDOD-ARMY Training
and Doctrine Command (TRADOC).

REFERENCES
[1] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J. H. Hadoop-gis:

A high performance spatial data warehousing system over mapreduce. PVLDB
6, 11 (2013), 1009–1020.

[2] Ashworth, M. Information technology – database languages – sql multimedia
and application packages – part 3: Spatial. Standard, International Organization
for Standardization, Geneva, Switzerland, 2016.

[3] Baig, F., Mehrotra, M., Vo, H., Wang, F., Saltz, J. H., and Kurç, T. M. Sparkgis:
Efficient comparison and evaluation of algorithm results in tissue image analysis
studies. InWorkshop on Biomedical Data Management and Graph Online Query-
ing - VLDB (2015), pp. 134–146.

[4] Battle, L., Stonebraker,M.,andChang, R.Dynamic reduction of query result
sets for interactive visualizaton. In Big Data (2013), pp. 1–8.

[5] Cruz, I. F., Ganesh, V. R., Caletti, C., and Reddy, P. Giva: a semantic frame-
work for geospatial and temporal data integration, visualization, and analytics.
In SIGSPATIAL (2013), pp. 544–547.

[6] Eldawy, A., and Mokbel, M. F. Spatialhadoop: A mapreduce framework for
spatial data. In ICDE (2015), pp. 1352–1363.

[7] Eldawy, A., Mokbel, M. F., Alharthi, S., Alzaidy, A., Tarek, K., and Ghani,
S. Shahed: A mapreduce-based system for querying and visualizing spatio-
temporal satellite data. In ICDE (2015), pp. 1585–1596.

[8] Eldawy, A., Mokbel, M. F., and Jonathan, C. Hadoopviz: A mapreduce frame-
work for extensible visualization of big spatial data. In ICDE (2016), pp. 601–612.

[9] Elmqvist, N., Dragicevic, P., and Fekete, J.-D. Rolling the dice: Multidimen-
sional visual exploration using scatterplot matrix navigation. TVCG 14, 6 (2008),
1539–1148.

[10] Heer, J., and Bostock, M. Declarative language design for interactive visual-
ization. TVCG 16, 6 (2010), 1149–1156.

[11] Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert, A., and Ron-
qest, M. Geomesa: a distributed architecture for spatio-temporal fusion. In
SPIE Defense+ Security (2015), pp. 94730F–94730F.

[12] Kini, A., and Emanuele, R. Geotrellis: Adding geospatial capabilities to spark,
2014.

[13] Lu, J., and Guting, R. H. Parallel Secondo: Boosting Database Engines with
Hadoop. In ICPADS (2012), pp. 738 –743.

[14] Maciejewski, R., Rudolph, S., Hafen, R., Abusalah, A., Yakout, M., Ouzzani,
M., Cleveland, W. S., Grannis, S. J., and Ebert, D. S. A visual analytics ap-
proach to understanding spatiotemporal hotspots. TVCG 16, 2 (2010), 205–220.

[15] Mostak, T. An overview of mapd (massively parallel database), 2013.
[16] NYC-TaxiTrip, 2009. New York City Taxi and Limousine Commission

http://www.nyc.gov/html/tlc/html/about/trip_record_data.html.
[17] OpenStreetMap. Open Street Map wiki page: zoom levels and map tiles.

http://wiki.openstreetmap.org/wiki/Zoom_levels, 2006.
[18] Sarwat, M. Interactive and scalable exploration of big spatial data - A data

management perspective. In MDM (2015), pp. 263–270.
[19] Sarwat, M., and Nandi, A. On Designing GeoViz-Aware Database Systems

âĂŞ Challenges and Opportunities. In SSTD (2017).
[20] Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and Heer, J. Vega-lite:

A grammar of interactive graphics. TVCG 23, 1 (2017), 341–350.
[21] Spark, A. Apache Spark homepage. http://spark.apache.org/, 2018.
[22] Tang, M., Yu, Y., Malluhi, Q. M., Ouzzani, M., and Aref, W. G. Locationspark:

A distributed in-memory data management system for big spatial data. PVLDB
9, 13 (2016), 1565–1568.

[23] Wang, L., Christensen, R., Li, F., and Yi, K. Spatial online sampling and aggre-
gation. In PVLDB (2015), vol. 9, pp. 84–95.

[24] Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. Simba: Efficient in-memory
spatial analytics. In SIGMOD (2016), pp. 1071–1085.

[25] Yu, J., and Sarwat, M. Indexing the pickup and drop-off locations of NYC taxi
trips in postgresql - lessons from the road. In SSTD (2017), pp. 145–162.

[26] Yu, J., Wu, J., and Sarwat, M. Geospark: a cluster computing framework for
processing large-scale spatial data. In SIGSPATIAL (2015), pp. 70:1–70:4.

[27] Yu, J., Wu, J., and Sarwat, M. A demonstration of geospark: A cluster comput-
ing framework for processing big spatial data. In ICDE (2016), pp. 1410–1413.

