
1

GeoSparkViz in Action: A Data System with
built-in support for Geospatial Visualization

Jia Yu 1, Anique Tahir 2, Mohamed Sarwat 3

School of Computing, Infomatics, and Decision Systems Engineering

Arizona State University

699 S Mill Avenue, Tempe, AZ 85281

1 jiayu2@asu.edu, 2 artahir@asu.edu, 3 msarwat@asu.edu

Abstract—Visualizing data on maps is deemed a powerful tool

for data scientists to make sense of geospatial data. The geospa-

tial map visualization (abbr. MapViz) process first loads the

designated geospatial data, processes the data and then applies

the map visualization effect. Guaranteeing detailed and accu-

rate geospatial MapViz (e.g., at multiple zoom levels) requires

extremely high-resolution maps. Classic solutions suffer from

limited computation resources while scalable MapViz system ar-

chitectures are not able to co-optimize the data management and

visualization phases in the same system. This paper demonstrates

GEOSPARKVIZ, a full-fledged system that allows the user to load,

prepare, integrate and execute MapViz tasks in the same system.

For demonstration purpose, we implemented a web interface

using a node.js web server, Baidu echarts library, and MapBox

on top of GEOSPARKVIZ to visually explore patterns in the

New York City Taxi Trips dataset. The demonstration scenarios

show how the data preparation and map visualization phases are

combined in GEOSPARKVIZ.

I. INTRODUCTION

Visualizing data on maps is deemed a powerful tool for
data scientists to make sense of geospatial data. For example,
a heat map of New York City taxi trips helps the NYC taxi and
limousine company determine where the hot pick-up and drop-
off locations are. A scatter plot of the worldwide road networks
exposes isolated areas around the world. Another example is
that a political campaign manager may leverage a choropleth
map of Twitter sentiment analysis in each US county after
each political debate. All aforementioned applications need to
employ a scalable system that can visualize big spatial data.

A geospatial map visualization system faces many chal-
lenges. First, the massive scale of available spatial data hinders
classic systems from generating geospatial maps at scale.
In addition, the user needs to see visualized result quickly
even for large-scale spatial analytics (e.g., spatial data mining,
geospatial analysis). Many commercial map services such as
Google Maps and MapBox only allow users to visualize a
small amount of spatial data on a single machine. Recent
solutions allow user visualize large-scale data by compressing
or sampling the spatial data but they are not able to provide
high-quality map images for the user (e.g., the multiple zoom
levels, giga-pixels).

MapReduce-based spatial data visualization systems,
e.g., [1], are scalable but these methods may still take long
run time to generate high-quality maps. That happens due
to the fact that MapReduce-based system, e.g., Hadoop, rely

on HDFS to store intermediate results and do not provide
an efficient way to process the data in memory. State-of-the-
art big spatial data management systems can perform queries
at scale [2] but do not provide in-house support for spatial
map visualization. Furthermore, existing system architectures
decouple the data processing and map visualization phases.
For instance, the data scientist may use a data system for
loading, processing and querying data, and a visualization tool,
e.g., Tableau, for visualizing the map. The decoupled approach
demands substantial overhead to connect the data management
system to the map visualization tool.

The paper demonstrates GEOSPARKVIZ [4], a data sys-
tem that provides built-in support for geospatial visualization
(MapViz). The system performs the data processing and map
visualization phases in the same data system, which leads to
three main benefits: (1) It provides a holistic approach that
allows the data scientist to load, process, query and visualize
spatial data. That plug-and-play approach increases the usabil-
ity of the system. (2) It reduces the overhead of loading the
intermediate spatial data generated from the data processing
phase to the designated map visualization tool. (3) It allows the
system to co-optimize classic query operators (e.g., selection)
and visualization operators side-by-side leading to a more
interactive visualization.

We implemented a prototype of GEOSPARKVIZ in a Spark-
based spatial data management system, GEOSPARK [5]. For
demonstration purposes, we use the NYC Taxi Trips dataset.
It contains NYC taxi trip records between January 2009 and
December 2016. Each record includes pick-up and dropoff
location coordinates, dates/times, trip distances, itemized fares,
tip amount. In the demo, we visualize patterns in the spatial
dataset and show how the data processing and map visualiza-
tion phases are executed and co-optimized in GEOSPARKVIZ.

II. SYSTEM OVERVIEW

Figure 1 gives an overview of GEOSPARKVIZ. The sys-
tem assumes that the spatial dataset is partitioned and dis-
tributed among the cluster nodes. The user interacts with
GEOSPARKVIZ using a declarative SQL-like MapViz lan-
guage using a set of predefined MapViz effects (scatter plot,
heat map, choropleth map,...), as follows: The user specifies
the input spatial data attribute in the SELECT clause. The
user can specify the input data table in the FROM clause.

2

GeoSparkViz MapViz Query Optimizer

MapTile Data
Partitioner

Spatial Query Operator
Range Join

Regular Query Operator
Filter Join

MaterializedView

MapViz
Operator

Pixelize

Pixel
aggregate

Render tiles

1
4 4 6 1 1

4 5 6 6 1
3

2 1 5 5 3 3

1

1 2 5 6 3 4

MapViz SQLWeb GUI
Interact

PickUp (-73.98,40.73) Fare=$5

PickUp (-73.97,40.72) Fare=$7

PickUp (-73.93,40.78) Fare=$6

…

Apache Spark Layer

KNN

Spatial RDD
Point Polygon

Projection

LineString

Fig. 1: GEOSPARKVIZ Overview

The input table(s) must consist of at least one spatial attribute
(e.g., point, polygon). The WHERE clause can support classic
spatial query predicates (e.g., necessary for the data processing
phase) such as ST_CONTAINS and relational predicates such
as =, >, <. The subset of the geospatial data that satisfies
the query predicate will then be visualized using the MapViz
effect stated in the SELECT clause. Moreover, the user can
also pass non-spatial attributes along with spatial objects to
the MapViz function. The syntax is as follows:
SELECT [MapViz name]([Dataset].[Attributes])
FROM [Spatial Dataset]
WHERE [Where clause]

The system then processes the MapViz SQL query and
returns the final map tiles / pixels to the user. To achieve that,
GEOSPARKVIZ consists of the following components:

Visualization Operators: GEOSPARKVIZ breaks down the
map visualization pipeline into a sequence of visualization
operators (namely, Pixelize, Pixel Aggregate, and Render).
Pixelize transforms spatial objects to pixels and groups the
objects by pixels (a spatial object may be pixelized to multiple
pixels and a pixel may be associated with multiple objects).
Pixel Aggregate aggregates the selected attribute of grouped
objects (e.g., Average(FareAmount)) and the aggregated values
become the weights of pixels. Render determines the pixel
colors based on the pixel weights. The system parallelizes
the execution of each operator among the cluster nodes. In
addition, GEOSPARKVIZ exposes the visualization operators
to the user through the declarative MapViz language. The user
can easily declare a new map visualization effect in a SQL
statement. For instance, the user can define new coloring rules
and pixel aggregation rules.

Materialized Views: For a given MapViz SQL query,
GEOSPARKVIZ can materialize two levels of database views,
cache them in memory and manage these views through the
system catalog. The MapViz optimizer will then utilize the
materialized views to speed up the upcoming MapViz queries
if possible. The two levels of materialized views are: (1) Pixel

view: generated by running the Pixelize operator. The schema
of this view is hpixel, ListOf(SpatialObject)i. Each
spatial object may have many attributes such as coordinates,
fare amount, trip distance, and so on. (2) Pixel aggregate
view: that is generated using the Pixel aggregate operator.
The schema of this view is hpixel, weighti. The weight
is the aggregated value of an attribute selected by the user.
The user may choose to manually create and materialize the
aforementioned views. The user can specify the materialization
level, as follows: 0 - None; 1 - PixelViewOnly; 2 - PixelAg-
gregateViewOnly; 3 - All.
CREATE MapViz VIEW [Name] AS [MapViz query]

WITH materialization_level = [0 | 1 | 2 | 3]

Map Tile Data Partitioner: GEOSPARKVIZ employs a
partitioner operator that partitions a given spatial dataset across
the cluster. Spatial objects that fall inside a logical map tile
boundary go to the same physical data partition and stay at the
same machine. Therefore, the system can easily render a map
tile using pixels from the same data partition. The partitioner
accommodates map visual constraints and also balances the
load among cluster nodes when processing skewed spatial
data. On one hand, it ensures that each data partition contains
roughly the same number of spatial objects and pixels to
achieve load balancing. On the other hand, the logical space
partition boundary of each data partition is derived from a map
tile space partition of the final map. That way, GEOSPARKVIZ
can easily stitch the data partitions that belong to the same tile
together and render map tiles efficiently.

Query Optimizer: The optimizer takes as input a MapViz
query, utilizes the cached materialized views and figures
out an execution plan that co-optimizes the map visualiza-
tion operators and query operators. A MapViz query with
CREATE MapViz VIEW clause always follows the straight-
forward decoupled plan (data preparation then map visualiza-
tion) because it needs to materialize all two levels of views
for future use. For upcoming queries, the optimizer will try to
utilize the materialized views as many times as possible such
that produce a more efficient execution plan (see Figure 4). For
instance, if the MapViz query works on the same spatial region
but uses a different WHERE clause, the optimizer will decide to
utilize the cached Pixel view and skip the Pixel operator. If the
query uses the spatial query predicate ST_WITHIN to require
a partially different spatial area, the optimizer will produce a
straightforward plan that goes down to the raw spatial data
but retrieves the missing raw spatial data and still utilizes the
cached materialized view to render the map tiles. In other
words, unless the target spatial region is totally different from
the materialized views, the optimizer will decide not to go
down to the raw data. Otherwise, it will instruct the system to
perform data processing and map visualization from scratch.

III. DEMONSTRATION SCENARIO

We implemented a client side web applications on the
top of GEOSPARKVIZ to visually explore the NYC taxi
trips. All needed datasets, such as taxi trips, have been
pre-loaded into the cluster. The client application consists
of two parts. The first part is implemented as a node.js
web server that takes in a request for visualization and

3

Step 1: Choose data and
map visualization effect

Step 3: Draw
range query

Step 2 Edit the generated
GeoViz SQL if necessary

SELECT HeatMap (trip.pickup)
FROM TaxiTrip
WHERE pickup_date = 01-23

Fig. 2: Taxi pickup points heat map on a snowy day

GeoSparkViz Monitoring

Job status

Fig. 3: GEOSPARKVIZ backend monitoring panel

executes a MapViz SQL query in GEOSPARKVIZ to create
the map tile(s) raster image(s). The second part is a web
GUI that gives the demo attendee several map visualization
options. In addition, the demo attendee can monitor the
backend cluster status via the monitoring panel (see Figure 3).

MapTile Partitioner

Pixel Aggregate

Render

Pixelize

Filtering
Projection

Pixel view

Pixel Aggregate

Render

(a) Decoupled plan (b) Combined plan

Filtering
Projection

Prep Visualize

Points

Fig. 4: Visualizing range queries

The web GUI has
two parts: (1) Left
Panel: shows a set of
histograms that rep-
resent statistics de-
scribing the demon-
strated dataset (e.g.,
the number of taxi
trips that happened on
each day). To generate the histograms, we use Baidu echarts

library. The demo attendee can choose any of the histograms
to start with. (2) Geospatial Map: depicts a map of the target
spatial area and the user-selected MapViz effect (i.e., MapViz
SQL query) on the map. During the demo, the audience
will fully interact with the histograms on the left panel and
the map. We use MapBox to load the map tiles generated
by GEOSPARKVIZ and stitch them to the earth background.
The demo attendee can also uncheck ”Turn On Optimizer”
button to experience the speed without the help of materialized
MapViz views and the optimizer. We give two demonstration
scenarios, described below:

Scenario I: Drop in Taxi Pickups on January 23
rd

2016:

In this scenario, the demo attendee selects the Number of Trips
per Day histogram. As given in Figure 2, the demo audience
can first create a heat map on the taxi trips in 2016 with
CREATE MapViz VIEW clause to understand the overall
trend. Then he right clicks on any bar in the histogram bar
chart and ask GEOSPARKVIZ for a heat map on the selected
taxi pickup points (Step 1). The demo attendee will also see the
MapViz SQL query used by GEOSPARKVIZ to generate the
heatmap as shown in the text box of Figure 2. The generated
MapViz SQL consists of classic SQL operators (e.g., Selection
predicates) as well as a HeatMap operator.The demo attendee
can manually edit the generated SQL. GEOSPARKVIZ will
process the edited MapViz SQL and generate a new map vi-
sualization. The attendee can easily recognize that the number
of taxi trips dramatically decreased on January 23rd 2016 and
started to slowly pick up again on the 24th and 25th. According
to the weather report, NYC had a severe snow storm on that
day. As shown in the heat map, Manhattan (as opposed to
other areas in NYC) Taxi commute is still active on January
23rd 2016 in spite of the blizzard.

SELECT HeatMap(Trips.pickup)
FROM Trips
WHERE pickup_date = 01-23-2016

AND ST_Contains(TimeSquare, pickup)

To further investigate the traffic on the day of January

4

23rd 2016, the demo attendee can draw a spatial range
query polygon on any geographical area of choice (Step 3
in Figure 2) on the map. This will ask the system to give
more details about the geographical distribution of taxi trips
in the selected area on that day. For the first MapViz query
with CREATE MapViz VIEW, GEOSPARKVIZ uses the de-
coupled plan in Figure 4. Other MapViz queries produced
the interaction follows the combined plan Figure 4b which
leverages the materialized pixel view.

Scenario II: Who is paying more tips in NYC? The
NYC taxi and limousine company divides the New York City

Pixel Aggregate

Render

Pixelize

Spatial Join

MapTile Partitioner

Points Polygons

(a) Decoupled plan

Render

Spatial Join

MapTile Partitioner

Polygons

(b) Combined plan

Pixel aggregate
view

Prep

Visualize

Fig. 5: Visualizing join queries

area into 260
polygonal
zones and each
taxi zone refers
to a street
block such as
Times Square.
A data scientist
may study the
average tip
percentage in
each taxi zone
and use a Choropleth Map to plot these zones (the color of
a zone is in proportion to the average tip percentage in this
zone). In other words, the demo attendee can explore the pick
up locations where customers pay more tips to taxi drivers.

This MapViz query still utilizes the MapViz views materi-
alized in Scenario I. The demo attendee will then write the
following MapViz SQL statement:

SELECT ChoroplethMap(Zones.geom,
average(tip_amount/total_amount))

FROM Trips, Zones
WHERE ST_Contains(Zones.geom, Trips.pickup)

AND pickup_date = 2016

As depicted in the MapViz SQL statement above, the demo
attendee first runs a Spatial Join Query between zones and
taxi trip pickup points to find the trips that lie within the
area of each taxi zone and then calculates the average tip
percentage. The result is passed to GEOSPARKVIZ optimizer.
After taking the SQL statement above, GEOSPARKVIZ yields
an efficient execution plan. The straightforward decoupled plan
(see Figure 5) first completes the spatial join query, pixelize
the polygons and then renders each map tile. It introduces two
data shuffling operations, one for the taxi trip dataset and one
for the zone dataset (distributed spatial join requires a spatial
data partitioning). A data shuffle sends lots of data across the
cluster and significantly increases the query and visualization
latency. However, GEOSPARKVIZ follows two optimization
strategies that will be demonstrated to the demo attendee in the
system back-end: (1) Utilize materialized MapViz views: This
strategy allows the zone dataset to join pixels directly such
that it utilizes the materialized Pixel aggregate view to reduce
the data scale of the taxi trip datasets. Due to the small size of
the aggregated pixel information, the scale of the data shuffles
is decreased (see Figure 5). (2) Skip unnecessary operators:
Similar to Scenario I, GEOSPARKVIZ uses a map tile data
partitioner to only partition the zone dataset. The other data

(a) Scatter plot (b) Heat map

Fig. 6: Performance of MultiRange + MapViz

shuffle introduced by partitioning taxi trip pickup points is
skipped to decrease the MapViz latency.

Experiments. We compare the optimized GEOSPARKVIZ,
regular GEOSPARKVIZ and HadoopViz, the counterpart in
Hadoop ecosystem on a 3-node cluster (1 master and 2
workers, each has a 12-core CPU and 100 GB memory). Four
real spatial datasets are tested: (1) TIGER Roads: the line string
shapes of 20 million roads in the US. (2) TIGER Edges: the
line string shapes of 73 million edges (i.e., roads, rivers, rails)
in the US. (3) New York Taxi [3] (4) OpenStreetMap Point: 1.7
billion spatial points on the planet. We issue a spatial range
query and visualize its result to either scatter plot or heat map.
The query is performed five times in this workload using five
different spatial range predicates. Optimized GEOSPARKVIZ
executes the optimized plan depicted in Figure 4(b) and the
straightforward plan depicted in Figure 4(a).

As shown in Figure 6 (”prep” - load, process and query
time, ”viz” - visualization time), optimized GEOSPARKVIZ is
50% faster than regular GEOSPARKVIZ and up to an order
of magnitude faster than HadoopViz for generating scatter
plot visualization. The results makes sense because: (1) The
GEOSPARKVIZ execution plan (see Figure 4) first pixelizes
spatial objects to pixels and caches them into memory, and
all spatial range predicates run directly on the cached pixel
dataset. (2) The MapViz partitioner in GEOSPARKVIZ is more
load-balanced than the data partitioner in HadoopViz. The
map tile method just repartitions the space to uniform grids
and does not take into account data skewness. (3) In contrast
to Spark-based systems, HadoopViz reads/writes intermedi-
ate data on disk. On small datasets like Roads and Edges,
GEOSPARKVIZ runs 8X faster than HadoopViz because,
GEOSPARKVIZ can process all intermediate data in memory.

REFERENCES

[1] A. Eldawy, M. F. Mokbel, and C. Jonathan. Hadoopviz: A mapreduce
framework for extensible visualization of big spatial data. In ICDE, pages
601–612, 2016.

[2] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient
in-memory spatial analytics. In SIGMOD, pages 1071–1085, 2016.

[3] J. Yu and M. Sarwat. Indexing the pickup and drop-off locations of NYC
taxi trips in postgresql - lessons from the road. In SSTD, pages 145–162,
2017.

[4] J. Yu, Z. Zhang, and M. Sarwat. Geosparkviz: a scalable geospatial data
visualization framework in the apache spark ecosystem. In SSDBM, pages
15:1–15:12, 2018.

[5] J. Yu, Z. Zhang, and M. Sarwat. Spatial data management in apache
spark: The geospark perspective and beyond. Geoinformatica, 2018.

