
Demonstrating GeoSparkSim: A Scalable Microscopic Road
Network Tra�ic Simulator Based on Apache Spark
Zishan Fu

Arizona State University
Tempe, Arizona

ZishanFu@asu.edu

Jia Yu
Arizona State University

Tempe, Arizona
jiayu2@asu.edu

Mohamed Sarwat
Arizona State University

Tempe, Arizona
msarwat@asu.edu

ABSTRACT
Road network tra�c data has been widely studied by researchers
and practitioners in di�erent areas such as urban planning, tra�c
prediction and spatial-temporal databases. The existing urban traf-
�c simulators su�er from two critical issues (1) scalability: most of
them only o�er single-machine solutions which are not adequate
to produce large-scale data. Some simulators can generate tra�c in
parallel but do not well balance the load among machines in a clus-
ter. (2) granularity: many simulators do not consider microscopic
tra�c situations including tra�c lights, lane changing, and car
following. In the paper, we propose GeoSparkSim, a scalable traf-
�c simulator which extends Apache Spark to generate large-scale
road network tra�c datasets with microscopic tra�c simulation.
The proposed system seamlessly integrates with a Spark-based
spatial data management system, GeoSpark, to deliver a holistic
approach that allows data scientists to simulate, analyze and vi-
sualize large-scale urban tra�c data. To implement microscopic
tra�c models, GeoSparkSim employs a simulation-aware vehicle
partitioning method to partition vehicles among di�erent machines
such that each machine has a balanced workload. A full-�edged
prototype of GeoSparkSim is implemented in Apache Spark. In this
demonstration, we will show the attendees how to issue GeoSpark-
Sim simulation tasks via the user interface, visualize simulated
vehicle movements, and monitor the backend Spark cluster status.

CCS CONCEPTS
• Information systems → MapReduce-based systems; Geo-
graphic information systems; • Computing methodologies
→ MapReduce algorithms.

KEYWORDS
Tra�c simulation, distributed computation, road network
ACM Reference Format:
Zishan Fu, Jia Yu, and Mohamed Sarwat. 2019. Demonstrating GeoSparkSim:
A Scalable Microscopic Road Network Tra�c Simulator Based on Apache
Spark. In 16th International Symposium on Spatial and Temporal Databases
(SSTD ’19), August 19–21, 2019, Vienna, Austria. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3340964.3340984

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SSTD ’19, August 19–21, 2019, Vienna, Austria
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6280-1/19/08. . . $15.00
https://doi.org/10.1145/3340964.3340984

1 INTRODUCTION
Road network tra�c data contains the trajectories of a set of ve-
hicles moving over a road network. Each trajectory consists of a
number of GPS points which capture the vehicle locations at every
audited time step. Such tra�c data has been widely studied by
researchers and practitioners in di�erent disciplines that include
urban planning, tra�c prediction and spatial-temporal databases.
For instance, researchers use tra�c data to evaluate the impact of
road network changes. Unfortunately, although there are millions
of vehicles driving in big cities, collecting large-scale high-quality
tra�c data requires tremendous e�orts since participating vehicles
must install GPS receivers and administrators must continuously
monitor these devices.

There are several classic tra�c simulators proposed in the past
two decades including Brinkho� [1] and BerlinMod [2]. The caveat
of using these approaches is that they do not consider microscopic
tra�c models [8], and hence cannot simulate individual vehicle
driving behaviors and tackle di�erent road situations such as traf-
�c signals. Microscopic tra�c models are very useful in practice
since they can generate data close to reality. However, a simulation
involving so many characteristics is computation-intensive and
traditional microscopic simulators such as SUMO [8] are only able
to simulate limited vehicles over a small road network. Recently,
there have been several research works that proposed scalable
microscopic simulators which can horizontally parallelize the sim-
ulation workload by adding more machines. However, performing
microscopic tra�c simulation in a distributed environment is very
challenging because:

Workload balance. A scalable simulator needs to partition the
workload to small chunks and assign them to di�erent machines
in a cluster. However, every time when a vehicle tries to change
lane or accelerate, it has to check its distance to nearby vehicles.
A proper partitioning method should take into account the spatial
proximity of vehicles and minimize cross-partition data exchange.

Dynamic distribution. The spatial distribution of moving ve-
hicles changes over time. Nearby vehicles may soon become far
from each other. Simulators have to employ proper mechanisms to
handle this change.

To deal with the challenges, TRANSIMS [10] opts to use graph
partitioning approaches to partition road networks but does not
consider their spatial distribution. The road network based parti-
tioning methods may not accurately balance the vehicle simulation
workload because most roads in a road network are idle and only
major streets are full of vehicles. ParamGrid [7] proposes to parti-
tion the geographical space to uniform grids. This does not work
well if the vehicles and road network have skewed distribution.
SMARTS [11] comes up with an approach that partitions the space

SSTD ’19, August 19–21, 2019, Vienna, Austria Zishan Fu, Jia Yu, and Mohamed Sarwat

Table 1: Comparison among di�erent tra�c simulators

Feature Brinkho� [1] SUMO [8] BerlinMOD [2] TRANSIMS [10] MATSim [13] ParamGrid [7] SMARTS [11] GeoSparkSim
Simulation model Macroscopic Microscopic Macroscopic Microscopic Microscopic Microscopic Microscopic Microscopic

Scalability Single node Single node Distributed [9] Distributed Multi-thread Distributed Distributed Distributed
Workload partitioning - - Hash Graph cut Uniform grids Uniform grids Z-curve Quad-Tree
Partition organization - - Fixed Fixed Fixed Fixed Fixed Dynamic
Distribution model - - MapReduce [4] MPI Thread sync. CORBA [12] TCP sockets RDD [14]

into small chunks numbered in a Z-curve like order. It then assigns
nearby chunks to the same machine. But it makes an unrealistic
assumption that the spatial distribution of moving vehicles is �xed.

In addition, most existing solutions are designed upon ine�-
cient distributed models. For instance, Parallel BerlinMod [9] uses
Hadoop MapReduce [4] and SMARTS [11] leverages simple TCP
sockets. Apache Spark, on the other hand, provides a novel data
abstraction called Resilient Distributed Datasets (RDDs) [14] that
are collections of objects partitioned across a cluster of machines.
Each RDD is built using parallelized transformations (�lter, join
or groupBy) that could be traced back to recover the RDD data. In
memory RDDs allow Spark to outperform existing models.

This paper demonstrates GeoSparkSim [3], a scalable tra�c sim-
ulator, which extends Apache Spark to generate large-scale road
network tra�c data with microscopic tra�c models. The proposed
system seamlessly integrates with a Spark-based spatial data man-
agement system, GeoSpark, to deliver a holistic approach that al-
lows data scientists to simulate, analyze and visualize large-scale
tra�c data. Speci�cally, the contributions are as follows:

• GeoSparkSim converts road networks to Spark graphs and
simulated vehicles to VehicleRDDs. Then it parallelizes each step in
tra�c simulation into a set of RDD transformations. Such transfor-
mation e�ciently distributes the computation-intensive simulation
workload to every machine in a cluster.

• GeoSparkSim takes into account microscopic tra�c models
such as tra�c lights, lane changing, and car following. To achieve
that, it employs a simulation-aware vehicle partitioning method to
partition vehicles among di�erent machines such that eachmachine
takes a roughly similar amount of simulation workload to achieve
load balance. This partition mechanism intuitively considers both
temporal attribute and spatial attribute of vehicles to handle the
dynamic spatial distribution.

A full-�edged prototype of GeoSparkSim is implemented in
Apache Spark. In the demonstration section, we will show the
attendees how to issue GeoSparkSim simulation tasks via the user
interface, visualize simulated vehicle movements, and monitor the
backend Spark cluster status.

2 SYSTEM OVERVIEW
GeoSparkSim consists of a Graphic User Interface (GUI) and four
layers: (1) Vehicle RDD and road network layer (2) route plan-
ning layer (3) simulation-aware route partitioning layer (4) micro-
scopic tra�c generating layer. GeoSparkSim works in concert with
GeoSpark Spatial RDDs and Spark GraphX to deliver a holistic ap-
proach that allows data scientists to simulate, analyze and visualize
large-scale urban tra�c data.

Graphic user interface (GUI). The GUI of GeoSparkSim is a
front-end map interface that users mainly interact with. It provides

Vehicle RDD

…

GeoSpark & Spark GraphX

VehicleRDD status
initialization

Road network

Route planning

Traffic lights Lane changing Car following

Microscopic traffic generating

Simulation-aware vehicle partitioning

Route
generation

VertexRDD EdgeRDDDriving model Running status

G
raphic

user
interface

User

Simulation
request

Visualized
traffic (sample)

Figure 1: GeoSparkSim architecture

two functionalities: (1) it takes input parameters from users in-
cluding the number of to-be-simulated vehicles, simulation region,
vehicle setting, time step, simulation period and so on. A user can
simply draw a rectangular window on the map and �ll in necessary
parameters. Then GeoSparkSim backend will download the road
network of the speci�ed region and generate simulated tra�c.

VehicleRDD and road network. VehicleRDD is a specialized
Spark RDD which consists of millions of individual vehicle objects.
Each vehicle has several attributes such as acceleration/deceleration,
velocity, safe distance and so on. The values of these attributes are
randomized so each vehicle has its personalized behavior. The user
can also provide customized vehicle behavior model by extending
movement control class (explained later). Besides that, each vehicle
has its own status to record its current simulated speed, GPS loca-
tions and acceleration state. Road network describes road situation
of the speci�ed simulation region and is stored as a Spark graph
which consists of a VertexRDD and an EdgeRDD. VertexRDD con-
tains all road junctions and EdgeRDD contains all road segments.

Route planning. GeoSparkSim �rst creates the initial status
vehicles in this layer. Then it randomly generates sources and desti-
nations for every vehicle following on the population distribution.
It leverages an open source library to build an index over the static
road network. This index contains lots of pre-computed shortest
paths so GeoSparkSim can quickly compute routes for every source
and destination pair on top of it.

Demonstrating GeoSparkSim: A Scalable Microscopic Tra�ic Simulator SSTD ’19, August 19–21, 2019, Vienna, Austria

Figure 2: GeoSpark Sim user interface

Simulation-aware vehicle partitioning.After route planning,
every vehicle in VehicleRDD has a planned route. These vehi-
cles will exactly follow the planned routes but each of them may
show di�erent microscopic behaviors such as accelerating and lane
changing. To simulate the microscopic model of a single vehicle,
GeoSparkSim needs to know the status of nearby vehicles and road
network information. To scale out such simulation to millions of
vehicle in a VehicleRDD, GeoSparkSim repartitions the VehicleRDD
and road network according to their spatial proximity such that it
can perform local microscopic simulation inside each VehicleRDD
partition. The repartitioning occurs periodically to re�ect the vehi-
cle distribution because vehicles may move to di�erent locations
on the road network after a period of time.

Microscopic tra�c generating. Given a VehicleRDD and the
road network partitioned by the vehicle partitioner, GeoSparkSim
will then run the microscopic simulation in each VehicleRDD par-
tition and its corresponding road network partition. This local
simulation generates microscopic tra�c which consists of vehicle
status at each time step. Each vehicle has a safe distance bu�er to
avoid collisions. A vehicle will adjust its speed if its next movement
will invade the safe distance bu�er of its nearby vehicles. Tra�c
signals at road intersections also a�ect the tra�c.

3 DEMONSTRATION
This section demonstrates the user interaction with GeoSpark-
Sim.All GeoSparkSim components are packaged into a single JAR
�le. The user can easily load it into Spark cluster and start to enjoy
the functionalities.

3.1 User-de�ned tra�c model
GeoSparkSim by default uses intelligent driving model [6] and
MOBIL [5] (minimizing overall braking induced by lane change)
models to moderate velocity and perform lane changing. GeoSpark-
Sim allows the user to plug in his or her own tra�c model such the
simulation result can �t in any speci�c scenario.

GeoSparkSim provides two abstract classes, car follow and move-
ment control. The user can easily extend them and implement ab-
stract methods such as safe distance check and movement control.

Cluster status

Spark backend status

Spark DAG schedule

Figure 3: GeoSparkSim backend monitoring

Safe distance check takes as input a vehicle and road network in-
formation and returns vehicles or tra�c lights ahead of the input
vehicle. The user can de�ne the checking mechanism for di�erent
vehicles and assign priorities to di�erent vehicles. Given the current
status of a vehicle, movement control computes the next movement
of this vehicle, such as acceleration, velocity and lane change.

3.2 User interface
GeoSparkSim user interface consists of two panels (see Figure 2).
The right panel includes the con�guration options and a status bar.
The user can enter the number of vehicles, the total simulation steps,
time per step and vehicle initialization method. The total simulated
period is equal to simulation steps ⇤ time per step. The example
shown in the �gure will simulate the 10-minute trajectories of 100K
vehicles in parallel. When the simulation is triggered, the status
bar at the bottom will print the real-time status of the on-going
simulation. This way, the user can better learn the current progress
of a simulation task. The left panel provides the map interface that
allows the user to select an arbitrary simulation region. When the
simulation begins, GeoSparkSimwill download real OpenStreetMap
road network data for the selected region and store it on HDFS.

It will then load the road network data into a Spark GraphX graph
which contains a VertexRDD and EdgeRDD. After processing the
road network data, GeoSparkSim will execute the simulation task
in parallel and persist generated trajectories on HDFS periodically.
Once it completes simulation, the status bar will print a noti�cation
and the user can opt to visualize the generated trajectories.

During the simulation, the user can also open GeoSparkSim
backend monitoring tools (see Figure 3) to check the runtime status
of the Spark cluster and explore the Spark Directed Acyclic Graph
(DAG) schedule to learn the internal progress of GeoSparkSim.

SSTD ’19, August 19–21, 2019, Vienna, Austria Zishan Fu, Jia Yu, and Mohamed Sarwat

Figure 4: GeoSparkSim tra�c visualization interface

3.3 Visualization interface
As illustrated in Figure 4, GeoSparkSim visualization interface will
animate the movement of vehicles on a road network selected by
the user (Arizona State University in this case). Once the simulation
is completed, the user can click "Show visualization" bottom to call
the visualization, this interface draws a graphical road network
with tra�c lights enabled and updates vehicle location and tra�c
signal at every time step. When a vehicle arrives at its destination,
it will restart from its source. All vehicles will stop moving if the
simulation data ends. Moreover, the user can freely zoom-in to a
particular road intersection to check a tra�c jam.

It is also worthing that the visualization interface runs in an
o�ine fashion to guarantee a smooth user exploration experience.
It starts playing the vehicle movements only after the entire simula-
tion is completed. In addition, the visualization process works best
for a small number of vehicles. When handling numerous vehicles,
it will only visualize a sample set of simulation results.

3.4 Experiment
We conduct an experiment on a cluster which has one master
node and four worker nodes. Each machine has an Intel Xeon
E5-2687WV4 CPU (12 cores, 3.0 GHz per core), 100 GB memory,
and 4 TB HDD. We also install Apache Hadoop 2.6 and Apache
Spark 2.3.2. This experiment studies the scalability of GeoSparkSim.
We vary the number from 50 thousand to 200 thousand andmeasure
the execution time and data size. The results are reported in Fig-
ure 5. We also show the time taken by each layer of GeoSparkSim.
GeoSparkSim will simulate the vehicle GPS locations from 8:00 to
8:15 at the granularity of 1 second. GeoSparkSim will repartition
VehicleRDD three times (8:00, 8:05, 8:10).

As shown in Figure 5a, both data importing and route planning
part take almost constant time. This happens because we use the
same big road network for all experiments. After loading the net-
work, GeoSparkSim leverages GraphHopper to build an index on
it to accelerate the route planning. The index construction is very
time-consuming as opposed to the route lookup part. On the other

(a) Execution time (b) Data size

Figure 5: Performance on di�erent numbers of vehicles

hand, both vehicle partitioning layer and local microscopic simula-
tion cost more time on the larger number of vehicles. This makes
sense because GeoSparkSim needs to spend more time on shu�ing
data across the machines and simulating tra�c on each partition if
there are more vehicles in the VehicleRDD. In addition, the local
microscopic simulation on each VehicleRDD partition takes most of
the simulation time. This is because the local simulation costs lots
of time to check the safe distance bu�er among di�erent vehicles.

As depicted in Figure 5b, as we increase vehicles in the Vehi-
cleRDD, the tra�c data generated by GeoSparkSim also increases.
This makes sense because GeoSparkSim has to provide more GPS
locations at each simulation time step if there are more vehicles.

REFERENCES
[1] B��������, T. A framework for generating network-based moving objects.

GeoInformatica 6, 2 (2002), 153–180.
[2] D������, C., B���, T., ��� G�����, R. H. Berlinmod: a benchmark for moving

object databases. VLDB J. 18, 6 (2009), 1335–1368.
[3] F�, Z., Y�, J., ��� S�����, M. Building a large-scale microscopic road network

tra�c simulator in apache spark. In MDM (2019).
[4] Apache Hadoop. http://hadoop.apache.org/.
[5] K������, A., T������, M., ��� H������, D. General lane-changing model mobil

for car-following models. Transportation Research Record 1999, 1 (2007), 86–94.
[6] K������, A., T������, M., ��� H������, D. Enhanced intelligent driver model

to access the impact of driving strategies on tra�c capacity. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences
368, 1928 (2010), 4585–4605.

[7] K�������, R., Z����, Y., L��, M., J�����������, R., ��� L������, R. A dis-
tributed, scalable, and synchronized framework for large-scale microscopic tra�c
simulation. In Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE
(2005), IEEE, pp. 813–818.

[8] K���������, D., H�������, G., R�����, C., ���W�����, P. Sumo (simulation of
urban mobility)-an open-source tra�c simulation. In Proceedings of the 4th middle
East Symposium on Simulation and Modelling (MESM20002) (2002), pp. 183–187.

[9] L�, J., ��� G�����, R. H. Parallel Secondo: Boosting Database Engines with
Hadoop. In ICPADS (2012), pp. 738 –743.

[10] N����, K., ��� R������, M. Parallel implementation of the transims micro-
simulation. Parallel Computing 27, 12 (2001), 1611–1639.

[11] R������������, K., X��, H., K����, L., K�����������, S., T����, E., Z����, R.,
��� K������, E. B. Smarts: Scalable microscopic adaptive road tra�c simulator.
TIST 8, 2 (2017), 26.

[12] V������, S. Corba: integrating diverse applications within distributed heteroge-
neous environments. IEEE Communications magazine 35, 2 (1997), 46–55.

[13] W������, R. A., C�������, D., B�����, M., ��� A�������, K. W. Perfor-
mance improvements for large scale tra�c simulation in matsim. In 9th STRC
Swiss Transport Research Conference: Proceedings (2009), vol. 565, Swiss Transport
Research Conference.

[14] Z������, M., C��������, M., D��, T., D���, A., M�, J., M�C����, M., F�������,
M. J., S������, S., ��� S�����, I. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI (2012), pp. 15–28.

