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Abstract—Road network traffic data has been widely studied
by researchers and practitioners in different areas such as urban
planning, traffic prediction and spatial-temporal databases. For
instance, researchers use such data to evaluate the impact of
road network changes. Unfortunately, collecting large-scale high-
quality urban traffic data requires tremendous efforts because
participating vehicles must install GPS receivers and admin-
istrators must continuously monitor these devices. There has
been a number of urban traffic simulators trying to generate
such data with different features. However, they suffer from
two critical issues (1) scalability: most of them only offer single-
machine solution which is not adequate to produce large-scale
data. Some simulators can generate traffic in parallel but do
not well balance the load among machines in a cluster. (2)
granularity: many simulators do not consider microscopic traffic
situations including traffic lights, lane changing, car following. In
the paper, we propose GeoSparkSim, a scalable traffic simulator
which extends Apache Spark to generate large-scale road network
traffic datasets with microscopic traffic simulation. The proposed
system seamlessly integrates with a Spark-based spatial data
management system, GeoSpark, to deliver a holistic approach
that allows data scientists to simulate, analyze and visualize large-
scale urban traffic data. To implement microscopic traffic models,
GeoSparkSim employs a simulation-aware vehicle partitioning
method to partition vehicles among different machines such
that each machine has a balanced workload. The experimental
analysis shows that GeoSparkSim can simulate the movements
of 200 thousand vehicles over a very large road network (250
thousand road junctions and 300 thousand road segments).

Index Terms—Spatio-temporal Data, Apache Spark, Traffic
Model, Microscopic Traffic Simulation

I. INTRODUCTION

Road network traffic data contains the trajectories of a
set of vehicles moving over a road network. Each trajectory
consists of a number of GPS points which capture the vehicle
locations at every audited time step. Such traffic data has been
widely studied by researchers and practitioners in different
disciplines that include urban planning, traffic prediction and
spatial-temporal databases. For instance, researchers use traffic
data to evaluate the impact of road network changes. Unfor-
tunately, although there are millions of vehicles driving in big
cities, collecting large-scale high-quality traffic data requires
tremendous efforts since participating vehicles must install
GPS receivers and administrators must continuously monitor
these devices.
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There are several classic traffic simulators proposed in
the past two decades including Brinkhoff [2] and Berlin-
Mod [3]. The caveat of using these approaches is that they
do not consider microscopic traffic models [12], and hence
cannot simulate individual vehicle driving behaviors and do
not consider different road situations such as traffic signals.
Microscopic traffic models are very useful in practice since
they can generate data close to reality. However, a simulation
involving so many characteristics is computation-intensive and
traditional microscopic simulators such as SUMO [12] are
only able to simulate limited vehicles over a small road
network.

Recently, there have been several research works that pro-
posed scalable microscopic simulators which can horizontally
parallelize the simulation workload by adding more machines.
However, performing microscopic traffic simulation in a dis-
tributed environment is very challenging because:

o Workload balance. A scalable simulator needs to par-
tition the workload into small chunks and assign them
to different machines in a cluster. However, every time
when a vehicle tries to change lane or accelerate, it
has to check its distance to nearby vehicles. A proper
partitioning method should take into account the spatial
proximity of vehicles and minimize cross-partition data
exchange.

« Dynamic distribution. The spatial distribution of moving
vehicles changes over time. Nearby vehicles may soon
become far from each other. Simulators have to employ
proper mechanisms to handle this change.

To deal with the challenges, TRANSIMS [15] opts to use
graph partitioning approaches to partition road networks but
does not consider their spatial distribution. The road network
based partitioning methods may not accurately balance the
vehicle simulation workload because most roads in a road
network are idle and only major streets are full of vehicles.
ParamGrid [11] proposes to partition the geographical space to
uniform grids. This does not work well if the vehicles and road
network have a skewed distribution. SMARTS [16] comes up
with an approach that partitions the space into small chunks
numbered in a Z-curve like order. It then assigns nearby
chunks to the same machine. However, it makes an unrealistic



assumption that the spatial distribution of moving vehicles is
fixed.

In addition, most existing solutions are designed upon
inefficient distributed models. For instance, Parallel Berlin-
Mod [13] uses Hadoop MapReduce [7] and SMARTS [16]
leverages simple TCP sockets. Apache Spark, on the other
hand, provides a novel data abstraction called Resilient Dis-
tributed Datasets (RDDs) [24] that are collections of objects
partitioned across a cluster of machines. Each RDD is built
using parallelized transformations (filter, join or groupBy) that
could be traced back to recover the RDD data. In memory
RDDs allow Spark to outperform existing models.

This paper presents GeoSparkSim, a scalable traffic sim-
ulator, which extends Apache Spark to generate large-scale
road network traffic data with microscopic traffic models.
The proposed system seamlessly integrates with a Spark-
based spatial data management system, GeoSpark, to deliver
a holistic approach that allows data scientists to simulate,
analyze and visualize large-scale traffic data. Specifically, the
proposed system has the following contributions:

e GeoSparkSim converts road networks to Spark graphs and
simulated vehicles to VehicleRDDs. Then it parallelizes each
step in traffic simulation into a set of RDD transformations.
Such transformation efficiently distributes the computation-
intensive simulation workload to every machine in a cluster.

e GeoSparkSim takes into account microscopic traffic mod-
els such as traffic lights, lane changing, and car following.
To achieve that, it employs a simulation-aware vehicle parti-
tioning method to partition vehicles among different machines
such that each machine takes a roughly similar amount of
simulation workload to achieve load balance. This partition
mechanism intuitively considers both temporal attribute and
spatial attribute of vehicles to handle the dynamic spatial
distribution.

o A full-fledged prototype of GeoSparkSim is implemented
in Apache Spark. Our experimental analysis shows that
GeoSparkSim can simulate the movements of 200 thousand
vehicles over a very large road network (250 thousand road
junctions and 300 thousand road segments).

Giving this outlook, this rest of this paper is presented as
follows: Section II studies the related work. An overview of
GeoSparkSim is given in Section III. Section IV details the
internals of VehicleRDD and road network graph. Section V
illustrates how to determine the routes of numerous vehicles.
The vehicle partitioning method is explained in Section VI
Section VII describes the microscopic simulation models in
GeoSparkSim. Section VIII shows the graphic user interface.
A comprehensive experimental analysis is given in Section IX.
Section X concludes the paper.

II. RELATED WORKS

Macroscopic traffic simulator. Simulators in this category
focus on general vehicular flow in transportation road network.
All vehicles drive in a similar manner and simply move from
the sources to the destinations step by step. Brinkhoff proposed
a simulator [2] that generates moving objects for every single

road segment in a simulation period. BerlinMOD [3] is a
popular moving object benchmark including a set of queries
and a data generator which is able to generate road network
traffic data for a number of identifiable vehicles. MNTG [14]
develops a wrapper of Brinkhoff framework and BerlinMOD
and provides a web service with a user-friendly and more
accessible interface. Macroscopic simulators can quickly yield
a massive amount of data because they are less computation-
intensive. But the produced data may not be realistic and
contain many vehicle collisions (e.g., vehicles have the same
GPS locations).

Microscopic traffic simulator. Compare to macroscopic
simulators, microscopic traffic simulators pay more attention
to the detailed mobility of each individual vehicles and takes
into account many different traffic events including lane chang-
ing, car following and traffic signals. SUMO [12] is one of
the most popular microscopic simulators. It supports many
microscopic traffic models such as lane changing, different
right-of-way rules, and traffic lights. Besides that, it also
provides custom simulation data for different objects, such as
vehicles, pedestrian, bicycles and railway. Such simulators are
too computation-intensive because the driving behavior of a
vehicle is affected by not only its own specification but also its
nearby vehicles. For example, to simulate the next location of
a vehicle, the simulator needs to check whether it is in a safe
distance to other vehicles. Therefore, although microscopic
simulators are able to generate realistic data, they suffer from
the scalability issue.

It requires tremendous efforts to develop a scalable traffic
simulator that fits a distributed environment because the sim-
ulator has to balance the workload to minimize data shuffle.
Researchers have come up with many different approaches,
explained below (see Table I).

Non-spatial partitioning approach. Some existing so-
lutions partition the workload without taking into account
the spatial proximity of the moving vehicles. Parallel-
BerlinMOD [13] integrates BerlinMOD with a distributed
DBMS called Parallel-Secondo [13] to deliver a scalable
solution. It partitions the vehicles using generic partitioners
such as hash partitioner and round-robin partitioner and par-
allelizes the computation to a set of Hadoop MapReduce
operations [7]. This approach is easy yet inappropriate for
microscopic simulators because vehicles running on the same
road segment are simulated by different machines. On the
other hand, a microscopic simulator TRANSIMS [15] pro-
poses to use graph cuts to partition the large road network then
apply the same partitions to vehicles. It leverages MPI [6] to
coordinate different machines in a cluster. TRANSIMS may
yield balanced network partitions such that each partition has
a similar number of road nodes and segments but ignores an
important fact: most road networks are idle and only major
streets are full of vehicles.

Spatial partitioning approach. Most scalable microscopic
simulators use spatial partitioning methods to strike bal-
anced workloads. MATSim [19] comes up with a method
that splits the space to uniform grids (say, Skm*5km) then



TABLE I: Comparison among different traffic simulators

Feature Brinkhoff [2] | SUMO [12] | BerlinMOD [3] | TRANSIMS [15] | MATSim [19] | ParamGrid [11] | SMARTS [16] | GeoSparkSim
Simulation model Macroscopic Microscopic Macroscopic Microscopic Microscopic Microscopic Microscopic Microscopic
Scalability Single node Single node Distributed [13] Distributed Multi-thread Distributed Distributed Distributed
Workload partitioning - - Hash Graph cut Uniform grids Uniform grids Z-curve Quad-Tree
Partition organization - - Fixed Fixed Fixed Fixed Fixed Dynamic
Distribution model - - MapReduce [7] MPI [6] Thread sync. CORBA [18] TCP sockets RDD [24]
uses these grids to partition road networks and vehicles. [~
It uses multi-threads to parallelize the computation. Param- Microscopic traffic generating
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designed upon inefficient distributed models. Many of them
still use message passaging services and do not employ ad-
vanced computation models and job schedulers. SMARTS [16]
leverages simple TCP sockets, TRANSIMS [15] uses MPI [6],
and MATSim [19] only utilizes multi-thread synchroniza-
tion. On the other hand, Parallel BerlinMod [13] uses
Hadoop MapReduce [7]. Although the Hadoop-based ap-
proach achieves high scalability, it still exhibits slow run
time performance since it persists all the intermediate data on
disk. Apache Spark provides a novel data abstraction called
Resilient Distributed Datasets (RDDs) [24] that are collections
of objects partitioned across a cluster of machines. Each
RDD is built using parallelized transformations (filter, join or
groupBy) that could be traced back to recover the RDD data.
In-memory RDDs allow Spark to outperform existing models.

III. SYSTEM OVERVIEW

GeoSparkSim consists of a Graphic User Interface (GUI)
and four layers: (1) Vehicle RDD and road network layer (2)
route planning layer (3) simulation-aware route partitioning
layer (4) microscopic traffic generating layer. GeoSparkSim
works in concert with GeoSpark Spatial RDDs and Spark
GraphX to deliver a holistic approach that allows data scien-
tists to simulate, analyze and visualize large-scale urban traffic
data.

Graphic user interface (GUI). The GUI of GeoSparkSim
is a front-end map interface that users mainly interact with.
It provides two functionalities: (1) it takes input parameters
from users including the number of to-be-simulated vehicles,
simulation region, vehicle setting, time step, simulation period
and so on. A user can simply draw a rectangular window on
the map and fill in necessary parameters. Then GeoSparkSim
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Fig. 1: GeoSparkSim architecture

backend will download the road network of the specified
region and start the simulation. (2) Once the simulation is
completed, the interface can animate the generated vehicle
movements on the selected road network upon the user’s
request.

VehicleRDD and road network. VehicleRDD is a spe-
cialized Spark RDD which consists of millions of individual
vehicle records. Each vehicle has several attributes such as
acceleration/deceleration, velocity, safe distance and so on.
The values of these attributes are randomized such that each
vehicle has its personalized behavior. The user can also control
attribute values via a vehicle configuration file. Besides that,
each vehicle also has its own status to record its current
simulated speed, GPS locations and acceleration state. Road
network describes road situation of the specified simulation
region and is stored as a Spark GraphX graph which consists
of a VertexRDD and an EdgeRDD. VertexRDD contains all
road junctions and EdgeRDD contains all road segments.

Route planning. GeoSparkSim first creates the initial status
vehicles in this layer. Then it randomly generates sources
and destinations for every vehicle following the population
distribution. It leverages an open source library to build an
index over the static road network. This index contains lots of
pre-computed shortest paths so that GeoSparkSim can quickly
compute routes for every source and destination pair on top
of it.



Simulation-aware vehicle partitioning. After route plan-
ning, every vehicle in VehicleRDD has a planned route.
These vehicles will exactly follow the planned routes but each
of them may show different microscopic behaviors such as
accelerating and lane changing. To simulate the microscopic
model of a single vehicle, GeoSparkSim needs to know the
status of nearby vehicles and road network information. To
scale out such simulation to millions of vehicle in a Vehi-
cleRDD, GeoSparkSim repartitions the VehicleRDD and road
network according to their spatial proximity such that it can
perform local microscopic simulation inside each VehicleRDD
partition. The repartitioning occurs periodically to reflect the
vehicle distribution because vehicles may move to different
locations on the road network after a period of time.

Microscopic traffic generating. Given a VehicleRDD
and the road network partitioned by the vehicle partitioner,
GeoSparkSim will then run the microscopic simulation in
each VehicleRDD partition and its corresponding road network
partition. This local simulation generates microscopic traffic
which consists of vehicle status at each time step. Each vehicle
has a safe distance buffer to avoid collisions. A vehicle will
adjust its speed if its next movement will invade the safe
distance buffer of its nearby vehicles. Traffic signals at road
intersections also affect the traffic.

IV. VEHICLERDD AND ROAD NETWORK

GeoSparkSim possesses two data structures, VehicleRDD
and road network. This section presents their internals and
explains how to create them from scratch. Later on, GeoSpark-
Sim will simulate vehicle movements by performing a set of
VehicleRDD transformations.

A. VehicleRDD

GeoSparkSim VehicleRDDs are in-memory distributed
datasets that extend traditional RDD to accommodate ve-
hicle objects in Apache Spark. Each VehicleRDD consists
of many partitions and each partition contains thousands of
vehicles. This way, each vehicle in this RDD can have its
own randomized driving model and status such that the system
yields arbitrary trajectories. In other words, a VehicleRDD is a
snapshot of current vehicle movements over the road network.

Vehicle object. Each vehicle in VehicleRDD has two com-
ponents (1) driving model: it incorporates several parame-
ters to control the driving behavior of a vehicle. They are
acceleration(m/s?), deceleration(-m/s?), steady speed (km/h),
lane changing probability (%), safe distance (meter), and
planned route. The route is generated by the route planning
layer. During the simulation, every vehicle moves along its
planned route over and over but each time it may stop
at different traffic lights, run in different lanes and gen-
erate different acceleration/deceleration events. (2) running
status: it includes several attributes to indicate the current
status of a running vehicle. They are driving event (accel-
eration/deceleration/steady), speed, and GPS location.

VehicleRDD transformation. To simulate the traffic of
numerous vehicles in a specific time period, GeoSparkSim

generates GPS locations of these vehicles for every simulation
time step. For instance, if the time period is 1 day and the
simulation time step is 1 hour, GeoSparkSim will take a
snapshot of the traffic every hour from 0:00 am to midnight. To
achieve that, GeoSparkSim first creates an initial VehicleRDD
and all vehicles stay at the origins of their routes. Then it
keeps transforming the VehicleRDD via a map operation.
Each RDD transformation will compute the new running
status of vehicles according to their individual driving models.
Every transformation produces a new VehicleRDD based on
its ancestor VehicleRDD. The running status computation
uses microscopic simulation models and will be detailed in
Section VII.

B. Road Network

Road network in GeoSparkSim is a Spark GraphX graph
which consists of a VertexRDD and an EdgeRDD. GeoSpark-
Sim supports the widely used OpenStreetMap XML format
so that users can easily load different road networks into
GeoSparkSim.

VertexRDD. VertexRDD contains millions of vertexes and
each vertex is a road junction that connects two road segments.
Each vertex has three attributes (1) ID: the unique ID of this
vertex (2) location: the spatial coordinate of this vertex (3)
type: a vertex can be on a highway or residential street. It
may have traffic lights.

EdgeRDD. EdgeRDD accommodates millions of edges and
each edge is a road segment which is a straight way between
two vertexes. Each edge consists of two attributes (1) the IDs
of source and destination vertexes (2) type: an edge can be a
part of the highway or residential street. It may also have a
one-way restriction.

C. Data importing

GeoSparkSim creates random driving models for all vehi-
cles in VehicleRDD and also allows the user to provide custom
rules via a configuration file, such as higher steady speed
and shorter safe distance. GeoSparkSim can load OSM XML
format data to build the road network. Two parts of OSM
XML data format are needed by GeoSparkSim, nodes and
ways. Nodes define all the junctions and each of them has id,
coordinate and type. Ways define shapes and type of streets.
The shape of a street is a sequence of junction IDs which
details individual road segments. GeoSparkSim decomposes
streets to road segments and stores them in EdgeRDD.

V. ROUTE PLANNING

Before starting to simulate the traffic, GeoSparkSim’s route
planning layer will create the initial status of a VehicleRDD
and generate individual routes for each vehicle in this RDD.

A. VehicleRDD status initialization

GeoSparkSim’s route planning layer first initializes the
status of vehicles in this RDD. It will generate a trip source
and a destination for every vehicle such that the vehicles will
move from their sources to destinations during the simulation.
Their specific routes will be generated in the next step.



There are some existing approaches to generate the sources
and destinations of moving objects such as the data-space
oriented approach (DSO) and network-based approach (NB).
The data-space oriented approach generates source and desti-
nation points based on a certain spatial distribution and runs
map matching to match points to their nearest nodes in the
road network. This spatial distribution can be the density of
human population or the density of buildings. Regions with
high density will produce more sources and destinations. The
network-based approach randomly selects road junctions as
sources and destinations. GeoSparkSim uses DSO approach
to make the data more realistic.

B. Route generation

Now, GeoSparkSim will generate the shortest path for every
pair of source and destination. There are many algorithms to
compute routes based on networks, such as Dijkstra, A-star,
D-star, and Multi-Level Dijkstra, etc.

For the sake of routing speed, GeoSparkSim leverages
GraphHopper [8], an open source route planning library,
to generate routes for every source and destination pair.
GeoSparkSim first uses GraphHopper to build an index over
the imported road network. This index pre-computes short
paths among common road junctions. Then GeoSparkSim
queries the pre-built index to calculate the route for every
vehicle.

VI. SIMULATION-AWARE VEHICLE PARTITIONING

To achieve load balance in a Spark cluster, GeoSparkSim
needs to split the VehicleRDD to approximately equal-size
partitions. The default data partitioning method in Spark such
as hash partitioner exhibits good performance for regular
ETL queries but cannot handle microscopic traffic simulation
because it does not take into account the spatial proximity
of simulated trajectories. Spatial partitioning approaches, e.g.,
Quad-Tree and R-Tree, in GeoSpark [22], SpatialHadoop [5] ,
BinJoin [20], ST-Hadoop [1], work well for points, polygons
and short trajectories but cannot handle long and tangled
trajectories. DST [21] and DITA [17] propose partitioning
methods for trajectories but cannot tackle the temporal at-
tribute in microscopic traffic simulation.

The vehicle partitioning layer in GeoSparkSim partitions
the workload temporally and spatially. It takes as input a
VehicleRDD and spatially partitions the vehicles according
to their planned routes in the upcoming temporal partition.
GeoSparkSim periodically invokes this layer to repartition
the VehicleRDD to make sure that the RDD always carries
out balanced partitions. To be precise, the simulation-aware
vehicle partitioning layer has the following advantages: (1)
partition by short-term routes instead of planned long routes
to avoid cross-partition routes as many as possible (2) allow
local microscopic traffic simulation inside each partition (3)
support dynamic vehicle movement distribution.

Step 1: Temporal partitioning. Throughout the simulation,
all vehicles will follow specific routes planned by the route
planning layer. However, these routes generally span many

blocks and tangle with others (depicted in Figure 2). It is very
hard to do spatial partitioning on the VehicleRDD according
to their overall routes. To remedy that, this step first parti-
tions the simulation period into several equal-width temporal
partitions. Then it will simulate these partitions one by one.
This way, GeoSparkSim can easily do spatial partitioning over
the temporal partition routes of these vehicles which are much
shorter.

Step 2: Estimate routes in the temporal partition.
Before simulating the trajectories in each temporal partition,
GeoSparkSim first needs to estimate the routes in this par-
tition. Given the overall planned route of a vehicle and its
ending spatial location in the last temporal partition, this step
calculates its farthest route using its steady speed. During the
simulation of this temporal partition, although each vehicle
always follows the estimated route, it does not necessarily
finish the planned route because it may run into random delays
caused by red signals and traffic jams.

Step 3: Spatial partitioning. This step utilizes the de-
fault spatial partitioning methods in GeoSpark, Quad-Tree,
to partition the VehicleRDD. It includes the following sub-
steps: (1) create sample: draw a random sample over the
VehicleRDD to represent the spatial data distribution of its
temporal partition routes (2) calculate boundaries: create a
Quad-Tree structure on the sample’s temporal partition routes
and use the boundaries of leaf nodes as geometrical boundaries
of new RDD partitions (3) repartition VehicleRDD: vehicles
whose estimated routes fall into the same boundary are sent to
the same partition. Vehicles whose estimated routes intersect
several partition boundaries are duplicated to all intersected
partitions. Note that, the geometrical boundaries in this step
can produce roughly balanced partitions because this step
builds balanced tree structures on a real sample of estimated
routes.

Step 4: Local microscopic traffic simulation. This step
performs the local microscopic traffic simulation on each Vehi-
cleRDD partition. Since all vehicles are partitioned according
to the spatial proximity of their estimated temporal partition
routes, this step does not have to communicate with other
partitions for nearby vehicle statuses via data shuffle. This
step will be detailed in the next section.

After simulating each temporal partition, GeoSparkSim will
invoke Step 2-4 in this layer to repartition the VehicleRDD
for the upcoming temporal partition. This is to maintain the
workload balance of this RDD because these vehicles keep
moving in the simulated region and their spatial distribution
varies in different temporal partitions.

Figure 2 is an example of GeoSparkSim workflow. The
user may ask GeoSparkSim to simulate the traffic in Tempe,
Arizona from 8:00 am to 9:00 am. GeoSparkSim will first plan
the routes for the VehicleRDD and do temporal partitioning
to partition this 1-hour period into 4 x 15-minute temporal
partitions. Then, for temporal partition 1 (8:00 am to 8:15 am),
GeoSparkSim runs Step 2-4 to partition VehicleRDD (see the
middle part in Figure 2) and then performs local simulation
in each RDD partition. GeoSparkSim will execute the same
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Fig. 2: GeoSparkSim workflow

steps for the rest of the temporal partitions one by one.

VII. MICROSCOPIC TRAFFIC SIMULATION
A. Simulation Algorithm

After partitioning the VehicleRDD, GeoSparkSim is now
ready to run a local microscopic simulation on each RDD
partition. All vehicles will follow their planned temporal
partition routes in this temporal partition. Every route starts
from the last location of the vehicle. GeoSparkSim equips a
generic microscopic simulation algorithm (see Algorithm 1)
which can plug in many common traffic simulation models.
This algorithm first calculates the number of GPS locations
needed to be simulated for every vehicle in this temporal par-
tition. This number can be easily computed via the following
equation:

temporal partition size

locations per vehicle = - -
time step size

where time step is the granularity of simulated trajectories (say,
1 second). It also indicates the number of simulation iterations
needed to be run by GeoSparkSim. The algorithm then runs a
set of iterations and in each iteration, it first asks every vehicle
to check whether its nearby vehicles invade its safe distance
buffer. A safe distance buffer is a small rectangle centered
at the vehicle itself. It describes the minimum safe distance
between two vehicles to avoid collisions. Then the algorithm
will generate individual behavior for every vehicle based on
the distance check result. After the local simulation on each
RDD partition, GeoSparkSim will persist the simulation results
on HDFS.

B. Microscopic simulation models

On each partition, GeoSpark runs a generic simulation
algorithm which allows pluggable microscopic traffic models.

1) Car-following: The car-following model uses the
Intelligent-Driver Model (IDM) [10] to update the current
vehicle’s speed based on its distance to the vehicle ahead of
it. IDM decides the acceleration and deceleration for every
time step in the simulation. The parameters of IDM include
the steady speed of this vehicle, acceleration factor, and
deceleration factor. If nearby vehicles are within the safe
distance buffer, this model will make the vehicle decelerate.

Algorithm 1: GeoSparkSim microscopic simulation

Data: iterations
Result: VehicleRDD and road network
1 Update the planned temporal partition routes of VehicleRDD
and perform repartition;
2 foreach partition in VehicelRDD do
3 foreach iteration do
4 foreach vehicle V do
5 Compute the safe distance buffer;
6 Create an empty list L;
7 foreach vehicle NearbyV do
// Assume NearbyV will move
forward as usual

8 if NearbyV’s next movement will be in
Vs buffer then

9 | Add NearbyV to L;

10 Generate the next movement of V';

11 return Simulation results

If there are no nearby vehicles, the model may accelerate the
vehicle.

2) Lane-changing: GeoSparkSim uses a general lane-
changing model called MOBIL [9]. A vehicle changes the
lane based on a specific probability. This model avoids the
collisions by using the safe distance buffer. If there are no
other vehicles inside the safe distance buffer, the vehicle might
change its lane. Otherwise, it will stay in the same lane.

3) Traffic lights: The greed-red intervals of traffic lights
are generated by GeoSparkSim randomly. When a traffic light
appears in the safe buffer distance of a vehicle, GeoSparkSim
will check the status of this light. The speed of this vehicle
will be changed to 0 right away if the light is red. If the light
becomes green in the next time steps, the vehicle will start to
accelerate.

VIII. GRAPHICAL USER INTERFACE (GUI)

GeoSparkSim provides a graphical user interface that allows
users to interact with the system. The user can issue simulation
requests and see visualized simulation results via this interface.

Interface components. GeoSparkSim user interface con-
tains three parts: input panel, map panel and report panel. The
input panel on the top is the place where the user can describe
his / her request by checking several options. The map panel
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Fig. 3: GeoSparkSim GUI

TABLE II: Parameters (default values are underlined)

[ Parameter [ Range |
Number of vehicles (thousand) 50, 100, 200
Time step (second) 0.2,04, 06, 1
Simulation period (minute) 10, 20, 30

on the center shows the viewport of a road network with a map
background. Users can zoom-in/out and pan on this panel to
see different regions. The report panel on the bottom shows
the completion time of each processing step to keep track of
the simulating process.

Issue a simulation request. The user can begin to enter the
number of moving objects, select VehicleRDD initialization
approach and the simulation time period on the input panel.
Then he or she will need to draw a rectangle on the map
panel to specify the simulation region. Moreover, this interface
allows the user to control vehicle behaviors by changing a
vehicle configuration file such as higher steady speed, shorter
safe distance or more lane-changing attempts.

Visualize the simulation result. Once the simulation is
done, the user can opt to ask for visualized simulation results.
The GUI will create an overlay painter over the map panel
and render the simulated vehicle locations to points at every
simulation time step. In each time step, the painter will
update the points in the overlay object list to show the latest
simulation locations. It is worth noting that GUI can only
visualize a small number of vehicle trajectories because it
runs only on the master machine. Therefore, after receiving
the visualization request, GeoSparkSim will take a random
sample from the vehicle trajectories to reduce the visualization
overhead.

IX. EXPERIMENT
A. Experiment setting

Parameters. We change the following parameters through-
out the experiments (values listed in Table II): (1) number of
vehicles: the number of vehicles that need to be simulated.
(2) time step: the time interval between two generated GPS
locations. It is the simulation granularity. (3) simulation pe-
riod: the overall period that GeoSparkSim wants to simulate.

50

1000 = Import data
[ Route planning ) 40
—~ 800{F=3 Vehicle partitioning
g &1 Local simulation k( = o
; 1 9 30 o
£ 600 ]
=1 } g o
c
o $ 20
= 400 o
3 3 .
& 200 } 10
3 o o o
= 0

50 100 200
Number of vehicles (thousand)

(b) Data size

50 100 200
Number of vehicles (thousand)

(a) Execution time

Fig. 4: Performance on different numbers of vehicles

By default, GeoSparkSim sets the temporal partition size to 5
minutes. In other words, it will invoke the vehicle partitioning
layer to repartition the VehicleRDD after simulating every 5-
minute traffic. For instance, assume a simulation workload
(time step = 1 second, temporal partition size = 5 minutes,
simulation period = 8:00 to 8:15), GeoSparkSim will simulate
the vehicle GPS locations from 8:00 to 8:15 at the granularity
of 1 second. GeoSparkSim will repartition VehicleRDD three
times (8:00, 8:05, 8:10). In addition, GeoSparkSim uses the
Quad-Tree partitioning method from GeoSpark [23] in its
spatial partitioning step.

Evaluation metrics. We use the following metrics to mea-
sure the performance of each approach: (1) Execution time: it
is the time of running a GeoSpark simulation workload. (2)
Data size: it is the size of generated traffic data.

Tested data. We use the full road network of the Phoenix
metropolitan area in the experiment. It consists of Maricopa
and Pinal counties, comprising a total area of about 14600
square miles. The entire road network contains 250 thousand
road junctions and 300 thousand road segments.

Cluster settings. All compared approaches are implemented
with Apache Spark. We conduct the experiments on a cluster
which has one master node and four worker nodes. Each
machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0
GHz per core), 100 GB memory, and 4 TB HDD. We also
install Apache Hadoop 2.6 and Apache Spark 2.3.2. We assign
10 GB memory to the Spark driver program that runs on the
master machine, which is quite enough to handle any necessary
global computation.

B. The impact of the number of vehicles

In this experiment, we study the impact of different numbers
of vehicles. We vary the number from 50 thousand to 200 thou-
sand and measure the execution time and data size. The results
are reported in Figure 4. We also show the time taken by each
layer of GeoSparkSim. During the simulation, GeoSparkSim
partitions the VehicleRDD twice (temporal partition size is 5
minutes).

As shown in Figure 4a, both data importing and route
planning part take almost constant time. This happens because
we use the same big road network for all experiments. After



120

r = Import data
2000 B Route planning 1001 mom
— [ | [T Vehicle partitioning
3 3 Local simulation —~ b
21500 A 8 go{ P
2 , < | [
=] N 6011 |
51000 5 E P
S
3 8 4041 o
] r
w500 p
o 20] P
o
0 r 0
0.2 0.4 0.6 0.2 0.4

Time steﬁ (second)

(b) Data size

Time step (second)
(a) Execution time

Fig. 5: Performance on different time steps

loading the network, GeoSparkSim leverages GraphHopper to
build an index on it to accelerate the route planning. The
index construction is very time-consuming as opposed to the
route lookup part. On the other hand, both vehicle partitioning
layer and local microscopic simulation cost more time on
the larger number of vehicles. This makes sense because
GeoSparkSim needs to spend more time on shuffling data
across the machines and simulating traffic on each partition
if there are more vehicles in the VehicleRDD. In addition, the
local microscopic simulation on each VehicleRDD partition
takes most of the simulation time. This is because the local
simulation costs lots of time to check the safe distance buffer
among different vehicles.

As depicted in Figure 4b, as we increase vehicles in the
VehicleRDD, the traffic data generated by GeoSparkSim also
increases. This makes sense because GeoSparkSim will have
to provide more GPS locations at each simulation time step if
there are more vehicles.

C. The impact of time steps

In this experiment, we test the performance of GeoSparkSim
on different simulation time steps, 0.2 second, 0.4 second
and 0.6 second. The simulation period is 10 minutes and the
temporal partition size is 5 minutes. 100 thousand vehicles are
simulated in the experiment. We report the execution time and
data size of GeoSparkSim simulation in Figure 5.

As described in Figure 5a, with larger time steps, GeoSpark-
Sim will spend less time on local microscopic simulation on
each RDD partition. This happens because, given a fixed sim-
ulation period, the system will generate fewer GPS locations
if the time step is larger. And, in each partition, GeoSparkSim
takes fewer iterations to simulate the vehicle movements. On
the other hand, data importing, route planning and vehicle
partitioning part have constant execution time because they
are only affected by the number of simulated vehicles.

Figure 5b shows the size of generated data for different
time steps. Simulation with 0.2 time step obtains the most
data because it is more granular. Simulation with 0.6 time
step has the least data because it is less granular.
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D. The impact of simulation periods

In this experiment, we further examine the impact of differ-
ent simulation periods. We vary the simulation period from 10
minutes to 30 minutes. 100 thousand vehicles are simulated,
the temporal partition size is 5 minutes and the time step is 1
second. We report the results in Figure 6.

As shown in Figure 6a, as the simulation period increases,
GeoSparkSim spends more time on simulating the traffic. This
makes sense because the system has to calculate the vehicle
movements for more time steps. The vehicle partitioning time
is also larger for a larger simulation period. This happens
because GeoSparkSim repartitions the VehicleRDD, 2, 4, and
6 times for different periods. On the other hand, data importing
and route planning have constant execution time because they
are only affected by the number of simulated vehicles.

As depicted in Figure 6b, with a larger simulation period,
GeoSparkSim will generate more traffic data. This matches the
expectation because the system will produce GPS locations for
more time steps.

It is worth noting that, the simulation period can be very
large because it will only increase the execution time linearly.
GeoSparkSim will always partition the period to temporal
partitions and run a simulation for them one by one.

X. CONCLUSION

In this paper, we presented GeoSparkSim, a scalable traffic
simulator which extends Apache Spark to generate large-scale
road network traffic data with microscopic traffic models. The
proposed system seamlessly integrates with a Spark-based
spatial data management system, GeoSpark, to deliver a holis-
tic approach that allows data scientists to simulate, analyze
and visualize large-scale traffic data. Moreover, GeoSparkSim
equips VehicleRDD and parallelizes the simulation workload
to a set of VehicleRDD transformations. The proposed system
also employs a simulation-aware vehicle partitioning method
to partition the workload among different machines. The
experimental analysis shows that GeoSparkSim can simulate
the movements of 200 thousand vehicles over a very large
road network (250 thousand road junctions and 300 thousand
road segments).
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