
1 23

Distributed and Parallel Databases
An International Journal of Data
Science, Engineering, and Management

ISSN 0926-8782

Distrib Parallel Databases
DOI 10.1007/s10619-020-07306-x

Dissecting GeoSparkSim: a scalable
microscopic road network traffic simulator
in Apache Spark

Jia Yu, Zishan Fu & Mohamed Sarwat

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)

Distributed and Parallel Databases
https://doi.org/10.1007/s10619-020-07306-x

1 3

Dissecting GeoSparkSim: a scalable microscopic road
network traffic simulator in Apache Spark

Jia Yu1 · Zishan Fu1 · Mohamed Sarwat1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Researchers and practitioners have widely studied road network traffic data in dif-
ferent areas such as urban planning, traffic prediction and spatial-temporal data-
bases. For instance, researchers use such data to evaluate the impact of road network
changes. Unfortunately, collecting large-scale high-quality urban traffic data requires
tremendous efforts because participating vehicles must install global positioning
system(GPS) receivers and administrators must continuously monitor these devices.
There have been some urban traffic simulators trying to generate such data with dif-
ferent features. However, they suffer from two critical issues (1) Scalability: most
of them only offer single-machine solution which is not adequate to produce large-
scale data. Some simulators can generate traffic in parallel but do not well balance
the load among machines in a cluster. (2) Granularity: many simulators do not con-
sider microscopic traffic situations including traffic lights, lane changing, car follow-
ing. This paper proposed GeoSparkSim, a scalable traffic simulator which extends
Apache Spark to generate large-scale road network traffic datasets with microscopic
traffic simulation. The proposed system seamlessly integrates with a Spark-based
spatial data management system, GeoSpark, to deliver a holistic approach that
allows data scientists to simulate, analyze and visualize large-scale urban traffic
data. To implement microscopic traffic models, GeoSparkSim employs a simulation-
aware vehicle partitioning method to partition vehicles among different machines
such that each machine has a balanced workload. The experimental analysis shows
that GeoSparkSim can simulate the movements of 300 thousand vehicles over a very
large road network (250 thousand road junctions and 300 thousand road segments)
and outperform the existing competitors.

Keywords Spatio-temporal data · Apache Spark · Traffic model · Microscopic traffic
simulation

 * Jia Yu
 jiayu2@asu.edu

Extended author information available on the last page of the article

Author's personal copy

http://orcid.org/0000-0003-1340-6475
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07306-x&domain=pdf

 Distributed and Parallel Databases

1 3

1 Introduction

Road network traffic data contains the trajectories of a set of vehicles moving over
a road network. Each trajectory consists of a number of GPS points which capture
the vehicle locations at every audited time step. Such traffic data has been widely
studied by researchers and practitioners in different disciplines that include urban
planning, traffic prediction and spatial-temporal databases. For instance, research-
ers use traffic data to evaluate the impact of road network changes. Unfortunately,
although there are millions of vehicles driving in big cities, collecting large-scale
high-quality traffic data requires tremendous efforts since participating vehicles
must install GPS receivers and administrators must continuously monitor these
devices. Researchers from Microsoft Research spent more than five years on col-
lecting 17621 trajectories over 182 volunteers [1]. Even if people manage to suc-
cessfully collect a limited amount of historical data, it usually has low quality and
only covers a small geographical area.

To remedy that, researchers turn to traffic data simulators which can easily
generate massive synthetic road network traffic data. There are several classic
traffic simulators proposed in the past two decades including Brinkhoff[2] and
BerlinMod [3]. The caveat of using these approaches is that they do not consider
microscopic traffic models[4], and hence cannot simulate individual vehicle driv-
ing behaviors and do not consider different road situations such as traffic signals.
Microscopic traffic models are very useful in practice since they can generate
data close to reality. However, a simulation involving so many characteristics is
computation-intensive and traditional microscopic simulators such as Sumo[4]
are only able to simulate limited vehicles over a small road network.

Recently, there have been several research works that proposed scalable micro-
scopic simulators which can horizontally parallelize the simulation workload by
adding more machines. However, performing microscopic traffic simulation in a
distributed environment is very challenging because:

– Workload balance A scalable simulator needs to partition the workload into
small chunks and assign them to different machines in a cluster. However,
every time when a vehicle tries to change lane or accelerate, it has to check
its distance to nearby vehicles. A proper partitioning method should take into
account the spatial proximity of vehicles and minimize cross-partition data
exchange.

– Dynamic distribution The spatial distribution of moving vehicles changes over
time. Nearby vehicles may soon become far from each other. Simulators have
to employ proper mechanisms to handle this change.

To deal with the challenges, TRANSIMS[5] opts to use graph partitioning
approaches to partition road networks but does not consider their spatial distribu-
tion. The road network based partitioning methods may not accurately balance
the vehicle simulation workload because most roads in a road network are idle
and only major streets are full of vehicles. ParamGrid[6] proposes to partition

Author's personal copy

1 3

Distributed and Parallel Databases

the geographical space to uniform grids. This does not work well if the vehicles
and road networks have a skewed distribution. SMARTS[7] comes up with an
approach that partitions the space into small chunks numbered in a Z-curve like
order. It then assigns nearby chunks to the same machine. However, it makes an
unrealistic assumption that the spatial distribution of moving vehicles is fixed.

In addition, most existing solutions are designed upon inefficient distributed
models. For instance, Parallel BerlinMod[8] uses Hadoop MapReduce[9] and
SMARTS[7] leverages simple TCP sockets. Apache Spark, on the other hand, pro-
vides a novel data abstraction called Resilient Distributed Datasets (RDDs)[10] that
are collections of objects partitioned across a cluster of machines. Each RDD is
built using parallelized transformations (filter, join or groupBy) that could be traced
back to recover the RDD data. In memory RDDs allow Spark to outperform existing
models.

This paper presents GeoSparkSim, a scalable traffic simulator, which extends
Apache Spark to generate large-scale road network traffic data with microscopic
traffic models. The proposed system seamlessly integrates with a Spark-based spa-
tial data management system, GeoSpark, to deliver a holistic approach that allows
data scientists to simulate, analyze and visualize large-scale traffic data. Specifically,
the proposed system has the following contributions:

• GeoSparkSim converts road networks and simulated vehicles to RDDs. Then
it parallelizes each step in traffic simulation into a set of RDD transformations.
Such transformation efficiently distributes the computation-intensive simulation
workload to every machine in a cluster.

• GeoSparkSim takes into account microscopic traffic models such as traffic lights,
lane changing, and car following. To achieve that, it employs a simulation-aware
data partitioning method to partition vehicles and the road network among dif-
ferent machines such that each machine takes a roughly similar amount of sim-
ulation workload to achieve load balance. This partition mechanism intuitively
considers both temporal attributes and spatial attributes of vehicles to handle the
dynamic spatial distribution.

• A full-fledged prototype of GeoSparkSim is implemented in Apache Spark1,2.
Our experimental analysis shows that GeoSparkSim can simulate the movements
of 300 thousand vehicles over a very large road network (250 thousand road
junctions and 300 thousand road segments).

Giving this outlook, this rest of this paper is presented as follows: Section 2 studies
the related work. An overview of GeoSparkSim is given in Sect. 3. Section 4 details
the internals of VehicleRDD. Road network construction is depicted in Sect. 5. Sec-
tion 6.2 illustrates how to determine the routes of numerous vehicles. The simula-
tion-aware data partitioning method is explained in Sect. 7. Section 8 describes the
microscopic simulation models in GeoSparkSim. Section 9 shows the graphic user

1 Source code: https ://githu b.com/zisha nfu/GeoSp arkSi m.
2 Demo video: https ://jiayu asu.githu b.io/files /video /geosp arksi m-demo.mp4.

Author's personal copy

https://github.com/zishanfu/GeoSparkSim
https://jiayuasu.github.io/files/video/geosparksim-demo.mp4

 Distributed and Parallel Databases

1 3

interface. A comprehensive experimental analysis is given in Sect. 10. Section 11
concludes the paper.

2 Related work

2.1 State‑of‑the‑art traffic simulators

Brinkhoff[2] is a framework for generating network-based moving objects. In Brink-
hoff framework, the generated object distribution is correlated to the density of
the network. It computes the fastest paths for moving objects which initially fol-
lows the uniform distribution and provides an interactive visualization interface for
users. The input of Brinkhoff framework is the road network data and some relevant
parameters. After triggering generation, source-destination pair will be generated by
a motion computing algorithm. The shortest path between source and destination
are computed by Dijkstra and A star path-finder algorithm. The trajectories will be
collected and reported in text or database by Java Database Connectivity (JDBC).
Brinkhoff generator preprocesses the road network to a compatible format, such as
edge and node. Users can modify the configuration file and the parameters in UI to
produce customized simulation.

BerlinMOD[3] is a benchmark for moving object databases based on SECONDO
DBMS[11], an extensible DBMS architecture for large-scale data. BerlinMOD uses
the approaches from Brinkhoff to create the start and destination node. The input of
BerlinMOD is the start node, destination node and travel starting time. The system
uses the Dijkstra algorithm, a well-known shortest path algorithm, to compute the
route. It provides different sets of queries for benchmarking the moving objects. The
user can also post SQL-like queries for moving objects.

Sumo[4] is an open-source continuous, microscopic and multi-modal traffic simu-
lation package. Multi-modal means the movement model includes not only cars but
also pedestrian, public transportation, etc. For example, a person may travel by walk
or by car.

– Components The car-following model used in Sumo is Gipps-model[12] which
moderates the safe velocity and helps to avoid collisions. Sumo also deploys traf-
fic lights during the simulation. Sumo develops a network converter to convert
various road network data into XML-description. Dijkstra algorithm is used to
compute the shortest paths.

– Usability Sumo supports different types of moving objects, such as car, pedes-
trian, train, subway, ship, etc. Users can enter the types of moving objects, simu-
lation scale and region. The user could customize data and explore the insights
on a visualization interface. After entering the required parameters, Sumo pre-
pares the road network and starts the simulation. When the simulation is finished,
the interface will display the animated simulation.

TRANSIMS[5] is a distributed traffic microscopic simulator. TRANSIMS parallel-
izes the simulation process by utilizing MPI[13]. For example, a road network graph

Author's personal copy

1 3

Distributed and Parallel Databases

is partitioned to several domains as the number of CPUs and each CPU simulates
the traffic on its domain. Moreover, TRANSIMS proposes methods to minimize
message passing costs and achieve load balancing.

– Graph partitioning TRANSIMS uses graph partitioning to cut the geographical
region into several similar size domains. It cuts the network streets in the middle
of the edges rather than intersections. Each CPU computes the local simulation
for a given time period then CPUs exchange the messages of boundaries, then
continue to run local simulations.

– Adaptive load balancing To be efficient, the loads on different CPUs should be
as similar as possible. TRAMSIMS uses an adaptive algorithm to determine the
load on each CPU. It first uses a naive approach to partition the graph for the
first round local simulation then figures out better partitions based on the perfor-
mance of the first local simulation.

MATSim[14] is an open-source toolbox to run large-scale traffic simulations. MAT-
Sim offers a set of the flexible toolkit that users can customize the modules and do
personalized simulation job. MATSim makes the most of the CPUs by multithread-
ing simulation jobs.

– Simulation model Generally, the approach to simulate moving objects in MAT-
Sim is to take advantage of the queue. MATSim applies a queue to execute the
operations in road network edges, like a street. Each edge has a queue to report
the entry time of moving objects. Adjacent edges collaborate to exchange mov-
ing objects to ensure the correctness of simulation. Based on this approach,
MATSim designs QueueSim which is a fixed-increment time advance model.
MATSim also provides another model in which the moving objects can change
time steps according to events, such as entering a street, leaving a road street, etc.

– Parallelization model MATSim contains three main components, simulation
units, messages and scheduler. Simulation units in MATSim are mainly about
moving objects and road network edges. Messages are the information exchanged
among different threads including vehicle simulation knowledge, such as a vehi-
cle leave a street and enter another street. The scheduler is a message priority
queue that sorts message time and type to control objects’ actions. For example,
the first moving object in the edge queue will be the first object to leave the edge
because the object has the earliest entering time. By round robin to assign the
same amount of workload to each thread, MATSim can handle simulation in par-
allel.

ParamGrid[6] is a distributed framework for large-scale microscopic traffic
simulation.

– Network division In ParamGrid, a road network is divided into tiles of equal
size zones with the number of rows and columns. The dividing process will
generate the boundaries of zones. ParamGrid generates a set of the source-
destination matrices which store the approximate simulation workload of the

Author's personal copy

 Distributed and Parallel Databases

1 3

vehicle. The matrix will be applied to the dividing process to balance the
workload. When a vehicle travels across tiles, with knowledge of all bounda-
ries, the global route thread will synchronize the status of these vehicles.

– Components ParamGrid uses[15], a suite of microscopic simulation mode-
ling tools, to do traffic simulation jobs. It employs CORBA[16], a distributed
model designed to facilitate the collaboration between systems, to distribute
the workload to a computer cluster.

– Architecture ParamGrid follows the master-slave distributed computing archi-
tecture. The master manages three services, global routing service, CORBA
naming service and event service. It first cuts the network, globally assigns
the name and location to each tile (tiles are distributed in the cluster), han-
dles cross tiles vehicles and provides a broadcast channel to synchronize the
simulation time frame. The slaves take three plug-ins, object request broker,
vehicle movement handler, simulation synchronization handler. A slave is
responsible for managing vehicle movement, receiving transferred vehicles
and synchronizing the simulation.

SMARTS[7] is a distributed large-scale microscopic simulator that is able to run
jobs on multiple machines in parallel.

– Architecture SMARTS provides a comprehensive set of simulation features. It
takes as input road network, routes, and a setup script. The road network data
is extracted from OpenStreetMap[17] by loading the external OSM file. The
vehicle routes are generated by the standard shortest path algorithm, Dijkstra
algorithm. A route contains the vehicle’s ID, start time, type and a sequence
of nodes that the vehicle will visit. The setup script is a configuration descrip-
tion of simulation parameters, such as maximum number of steps, number of
generated random vehicles, maximum distance, number of updates per second,
etc. After the data preparation, SMARTS uses several microscopic simulation
models such as car-following, lane-changing, traffic light, route changing, traf-
fic rules, and calibrations. The simulation results will be stored on disk and
visualized in a graphical user interface.

– Workload balancing The start coordinates of vehicles are generated following
road network distribution. Thus SMARTS assumes the simulation workload
is approximately equal to the road network distribution. The road network in
SMARTS is divided into a set of uniform grids ordered by z-curve. SMARTS
adopts a typical master-slave distributed computing model in which the master
machine manages the simulation configuration jobs, such as assigning work-
load to slave and a slave is an executor to run the local simulation.

– Synchronization SMARTS proposed two simulation synchronization strate-
gies: centralized synchronization (CS) and decentralized synchronization
(DS). In CS, the server asks all the workers to exchange information and simu-
late traffic at each time step. In DS, the master doesn’t play such a critical role
and hold fewer pressures. The master only assigns the first round of simulation
jobs, and workers will automatically run the simulation step by step.

Author's personal copy

1 3

Distributed and Parallel Databases

2.2 Comparison

Macroscopic traffic simulator Simulators in this category focus on general vehic-
ular flow in a transportation road network. All vehicles drive in a similar manner
and simply move from the sources to the destinations step by step. Brinkhoff sim-
ulator[2] generates moving objects for every single road segment in a simulation
period. BerlinMOD[3] is a popular moving object benchmark including a set of que-
ries and a data generator which is able to generate road network traffic data for a
number of identifiable vehicles. MNTG[18] develops a wrapper of Brinkhoff frame-
work and BerlinMOD and provides a web service with a user-friendly and more
accessible interface. Macroscopic simulators can quickly yield a massive amount of
data because they are less computation-intensive. But the produced data may not
be realistic and contain many vehicle collisions (e.g., vehicles have the same GPS
locations).

Microscopic traffic simulator Compare to macroscopic simulators, microscopic
traffic simulators pay more attention to the detailed mobility of each individual vehi-
cle and take into account many traffic events including lane changing, car following
and traffic signals. Sumo[4] is one of the most popular microscopic simulators. It
supports many microscopic traffic models such as lane changing, different right-of-
way rules, and traffic lights. Besides that, it also provides custom simulation data for
different objects, such as vehicles, pedestrian, bicycles and railway. Such simulators
are too computation-intensive because the driving behavior of a vehicle is affected
by not only its own specification but also its nearby vehicles. For example, to simu-
late the next location of a vehicle, the simulator needs to check whether it is in a safe
distance to other vehicles. Therefore, although microscopic simulators are able to
generate realistic data, they suffer from the scalability issue.

It requires tremendous efforts to develop a scalable traffic simulator that fits a dis-
tributed environment because the simulator has to balance the workload to minimize
data shuffle. Researchers have come up with many different approaches, explained
below (see Table 1).

Non-spatial partitioning approach Some existing solutions partition the work-
load without taking into account the spatial proximity of the moving vehicles.

Table 1 Comparison among different traffic simulators

Feature Simulation Scalability Workload Partition Distribution
Model Scalability Partitioning Organization Model

Brinkhoff[2] Macroscopic Single node – – –
Sumo[4] Microscopic Single node – – –
BerlinMOD[3] Macroscopic Distributed Hash Fixed MapReduce[9]
TRANSIMS[5] Microscopic Distributed Graph cut Fixed MPI[13]
MATSim[14] Microscopic Multi-thread Uniform grids Fixed Thread sync.
ParamGrid[6] Microscopic Distributed Uniform grids Fixed CORBA[16]
SMARTS[7] Microscopic Distributed Z-curve Fixed TCP sockets
GeoSparkSim Microscopic Distributed Quad-Tree Dynamic RDD

Author's personal copy

 Distributed and Parallel Databases

1 3

Parallel-BerlinMOD[8] integrates BerlinMOD with a distributed DBMS called
Parallel-Secondo[8] to deliver a scalable solution. It partitions the vehicles using
generic partitioners such as hash partitioner and round-robin partitioner and paral-
lelizes the computation to a set of Hadoop MapReduce operations[9]. This approach
is easy yet inappropriate for microscopic simulators because vehicles running on the
same road segment are simulated by different machines. On the other hand, a micro-
scopic simulator TRANSIMS[5] proposes to use graph cuts to partition the large
road network then apply the same partitions to vehicles. It leverages MPI[13] to
coordinate different machines in a cluster. TRANSIMS may yield balanced network
partitions such that each partition has a similar number of road nodes and segments
but ignores an important fact: most road networks are idle and only major streets are
full of vehicles.

Spatial partitioning approach Most scalable microscopic simulators use spatial
partitioning methods to strike balanced workloads. MATSim[14] comes up with a
method that splits the space to uniform grids (say, 5km*5km) then uses these grids
to partition road networks and vehicles. It uses multi-threads to parallelize the com-
putation. ParamGrid[6] uses a partitioning method similar to MATSim but utilizes
CORBA[16] framework which internally uses RPC. SMARTS[7] partitions the
space to very small cells and orders them into a curve similar to Z-curve. Cells that
have the same ID are assigned to the same machine. Although these approaches take
into account spatial proximity, GeoSparkSim still outperforms them because (1)
their partitioners cannot balance vehicles due to their skewed spatial distribution.
GeoSpark[19] and SpatialHadoop[20] both show that KDB-Tree and Quad-Tree par-
titioning approaches are better. (2) the spatial distribution of moving vehicles keeps
changing during the simulation. Instead of using fixed partitions, GeoSparkSim uses
a spatial-temporal partitioning approach to automatically repartition vehicles over
time.

2.3 Distributed computation frameworks

Existing solutions Most of the existing traffic simulators are designed upon inef-
ficient or inconvenient distributed programming models. Many of them still use
message passaging services and do not employ advanced computation models and
job schedulers. SMARTS[7] leverages simple TCP sockets, TRANSIMS[5] uses
MPI[13], and MATSim[14] only utilizes multi-thread synchronization. On the other
hand, Parallel BerlinMod[8] uses Hadoop MapReduce[9]. Although Hadoop-based
systems achieve high scalability, they still exhibit slow run time performance since it
persists all the intermediate data on disk.

Apache Sparkis a distributed general-purpose cluster computing framework
which allows users to easily write distributed programs without being involved in
the details of parallelism. It also can tolerate faults and scale out to many commod-
ity machines. It is an implementation of Resilient Distributed Datasets (RDD)[21].
An RDD is an in-memory dataset that is partitioned across machines in a cluster.
RDDs are immutable and fault-tolerant data structures that allow users to persist

Author's personal copy

1 3

Distributed and Parallel Databases

intermediate results in memory to speed up distributed query processing. In-mem-
ory RDDs allow Spark to outperform existing models such as Hadoop MapReduce.

GeoSpark[19] is an in-memory cluster computing framework for processing
large-scale spatial data. It employs a technique called Spatial RDD which extends
Apache Spark RDD to support geospatial objects, indices and queries. A Spatial-
RDD accommodates various types of spatial objects and provides spatial partition-
ing mechanism, such as R-tree, Quad-tree, and so on. It supports many spatial que-
ries, such as spatial range, join, and k-nearest neighbors algorithm (KNN) queries
and is able to run them in parallel.

3 GeoSparkSim architecture

GeoSparkSim consists of a Graphic User Interface (GUI) and five simulation com-
ponents given below. GeoSparkSim works in concert with GeoSpark Spatial RDDs
and Spark to deliver a holistic approach that allows data scientists to simulate, ana-
lyze and visualize large-scale urban traffic data (Fig. 1).

VehicleRDD GeoSparkSim equips a specialized VehicleRDD which extends Spark
RDD to accommodate millions of individual vehicle records. The driving status of each
vehicle has several attributes such as velocity, safe distance, GPS location and so on.
Each vehicle also possesses several personal characteristics such as politeness factor

Fig. 1 GeoSparkSim architecture

Author's personal copy

 Distributed and Parallel Databases

1 3

and braking deceleration. The values of status change in a specific reasonable range
according to the personal characteristics of vehicles. That way, each vehicle has its per-
sonalized behavior. The user can also define these behaviors via a vehicle configuration
file.

Road network A road network describes the road situation of the specified simu-
lation region. In GeoSparkSim, the road network is composed by three RDDs,
NodeRDD, EdgeRDD, and SignalRDD. NodeRDD contains all road junction points,
and EdgeRDD contains all road segments. Moreover, SignalRDD describes specific
scenarios such as traffic lights in the road network. GeoSparkSim constructs this net-
work using real geographical data from OpenStreetMap.

Route planning In this component, GeoSparkSim first creates the initial status for
vehicles in VehicleRDD. Then it generates sources, and destinations for every vehicle
following a particular spatial distribution. It leverages an open source library to build
an index over the static road network. This index contains lots of pre-computed shortest
paths. GeoSparkSim computes routes for every source and destination pair on top of
the index, gathers the results and attaches routes to corresponding vehicles.

Simulation-aware data partitioning After route planning, every vehicle in Vehi-
cleRDD has a planned route. These vehicles will precisely follow the expected path,
but each of them will show different microscopic driving behaviors. To simulate the
microscopic model of a single vehicle, GeoSparkSim needs to know the status of
nearby vehicles and road network information. To scale out such simulation to millions
of vehicles in VehicleRDD, GeoSparkSim co-partitions the VehicleRDD and road net-
work according to their spatial proximity such that it can perform local microscopic
simulation inside each VehicleRDD partition. The repartitioning occurs periodically to
reflect the vehicle distribution because vehicles may move to different locations on the
road network after a while.

Microscopic traffic computing Given a VehicleRDD and the road network parti-
tioned by the data partitioner, GeoSparkSim will then run the microscopic simulation
in each VehicleRDD partition and its corresponding road network partition. This local
simulation generates traffic with individual object mobility patterns which consist of
vehicle status at each time step. Each vehicle has a safe distance to avoid collisions.
A vehicle will moderate the speed if its next movement invades the safe distance to
nearby vehicles or objects. Traffic signals at road intersections also affect the traffic.

Graphic user interface (GUI) Users can interact with GeoSparkSim by the front-end
map interface which provides two functions: (1) it takes input parameters from users
including the number of to-be-simulated vehicles, simulation region, vehicle configu-
ration, time step, simulation period and so on. A user can directly draw a rectangular
window on the map and fill in necessary parameters. Then GeoSparkSim backend will
download the road network of the specified region, generate simulated traffic data and
visualize back to GUI.

Author's personal copy

1 3

Distributed and Parallel Databases

4 VehicleRDD

GeoSparkSim VehicleRDDs are in-memory distributed datasets that extend tradi-
tional RDD to accommodate vehicle objects in Apache Spark. VehicleRDD consists
of a set of vehicles with its randomized attributes and status such that yields arbi-
trary trajectories. Each VehicleRDD consists of many partitions and each partition
contains thousands of vehicles. GeoSparkSim performs simulation in each partition
and these partitions compute simulation in parallel by distributing the VehicleRDDs
across the cluster.

4.1 Vehicle

A vehicle object in GeoSparkSim consists of two parts (1) vehicle attribute: defines
driving behaviors. These attributes are parameters used in driving models and will
affect the randomness factor in the running status. (2) running status: describes the
current state of a vehicle. A status contains many attributes which can generate rich
simulation information for the user. The value ranges of these attributes are deter-
mined by the driving model.

Attributes A vehicle has more than 10 attributes. Their names and explanation
are given in Table 2. The values of these attributes (except source, destination and
route) are randomly generated according to the value ranges specified in the vehicle
configuration file. The user can also change the value range in the configuration file
to produce customized simulation results. GeoSparkSim integrates two microscopic
driving models, IDM[22] and MOBIL[23], in its simulation algorithm. The attrib-
utes listed in the table are the parameters used in the driving models. The simulation
algorithm in Sect. 8 will utilize these attributes to generate vehicle statuses at differ-
ent time steps.

Table 2 The attributes of a vehicle

Attribute Explanation

Source The starting coordinate of this vehicle
Destination The final coordinate of this vehicle
Route The planned route from the source to destination. It is a sequence of coordinates
Plate number The unique identification of a vehicle. It is a random combination of 5 characters

from English letters and number 0–9
Car length The length of the vehicle (e.g., 1 m). This is used when compute the safe distance

between two vehicles
Acceleration The acceleration of this vehicle (e.g., 2m/s

2)
Brake deceleration The deceleration of this vehicle (e.g., −2m/s

2)
Safe distance If the distance between two cars is shorter than this safe distance (e.g., 1 meter), a

car collision will happen.
Default speed The default speed (e.g., 5 m/s). A vehicle will always accelerate to this speed. Then

it will keep this speed if no event triggers a deceleration
Politeness factor A value between (0, 1). A vehicle with a lower politeness factor will change its lane

more frequently

Author's personal copy

 Distributed and Parallel Databases

1 3

Running status A running status is the status of a vehicle at a time step. The
detailed items recorded in a running status is given in Table 3. During the simula-
tion, every vehicle moves along its planned route over and over. But at every time
step, it may stop at different traffic signals, run on separate lanes and generate vari-
ous acceleration/deceleration events based on microscopic driving models.

4.2 VehicleRDD transformation

To simulate the traffic of numerous vehicles in a specific period, GeoSparkSim gen-
erates GPS locations of these vehicles for every simulation time step. For instance, if
the period is one day and the simulation time step is 1 hour, GeoSparkSim will take
a snapshot of the traffic every hour from 0:00 am to midnight. To achieve that, Geo-
SparkSim first creates an initial VehicleRDD, and all vehicles stay at the origins of
their routes. Then it keeps transforming the VehicleRDD via a map operation. Each
RDD transformation will compute the new running status of vehicles according to
their driving models. Every transformation produces a new VehicleRDD based on
its parent VehicleRDD. The running status computation uses microscopic simula-
tion models and will be detailed in Sect. 8. In other words, a VehicleRDD is a snap-
shot of current vehicle movements over the road network.

5 Road network

A road network is a graph that describes road paths and junctions. It is the funda-
mental infrastructure of any traffic simulator. An actual road network is extremely
complex and requires tremendous efforts on the ETL phase (Extract, Transformation
and Load). In order to achieve high performance, GeoSparkSim loads all road net-
work elements to three RDDs, NodeRDD, EdgeRDD and SignalRDD.

5.1 Raw road network data

GeoSparkSim supports OpenStreetMap (OSM) XML road network data format, one
of the most common road network formats. OpenStreetMap provides a thorough

Table 3 The running status of a vehicle

Status Explanation

Current position The current coordinate of this vehicle
Current lane The lane that the vehicle is going through now. An edge may have many lanes
Current edge The edge that the vehicle is going through no
Current path The edges that the vehicle will go through in the current temporal partition

(explained in Sect. 8)
Current path length The length of each edge in the current pat
Current speed The current speed of the vehicle
Current signal in front Indicates whether there is a red traffic light in front

Author's personal copy

1 3

Distributed and Parallel Databases

description of road networks on the earth. Figure 2 is an example of OSM road net-
work information. After a user selects the region, GeoSparkSim will fetch XML data
from OpenStreetMap and use a sinker software provided by OSM to transform the
data to structured tables. The transformed data is saved as parquet format in HDFS
or local disk (see Fig. 3).

An OSM road network consists of a node table and a way table. The former
contains all nodes in the selected region and the latter includes all ways (e.g., Wall
Street) in this region. A node usually is the junction, turning point or end point of
the way. A node consists of id, latitude, longitude, and tags. A way consists of a
sequence of edges marked out by nodes. A node on this way is a junction where two
or more edges meet. These nodes are the vertex in the graph.

5.2 Road network in RDDs

The raw OSM data contains nodes and ways, but GeoSpark road network needs
nodes, edges and signals. To achieve that, GeoSparkSim reads nodes and ways into
Spark and runs a set of data cleaning and transformation to obtain specialized RDDs
(see Fig. 3). Nodes represent intersections along the roads and edges represent the
segments that connect two intersections.

Fig. 2 The raw road network data

Author's personal copy

 Distributed and Parallel Databases

1 3

Algorithm 1: Transform raw OSM data
Data: raw nodes, raw ways
Result: nodes, links, lights

1 Filter traffic signal nodes from raw nodes;
2 Break raw ways to edges;
3 Join nodes with edges by node ids;
4 Compute the distance of each edge;
5 return Road Network(nodeRDD, linkRDD, lightRDD)

Road network in GeoSparkSim RDDs A road network in GeoSpark consists of
three specialized RDDs: (1) NodeRDD contains all needed nodes from an arbi-
trarily selected region, and each node is a road junction that connects two edges.
Each node has four attributes as shown in Table 4. (2) NodeRDD accommodates
all necessary edges, and each edge is a road segment which is a straight way
between two nodes. Each edge has many attributes as depicted in Table 2. (3) Sig-
nalRDD includes all signal nodes in the simulation region. Each signal contains
three main attributes (1) the node ID (2) the controlled way ID (3) coordinate.

Algorithm of transforming OSM data GeoSparkSim equips an algorithm (see
Algorithm 1) to clean the original OSM data and transform to three special-
ized RDDs. Figure 2 is an example of a small road network. Way1 and way2
cross each other, and there are three nodes. Node2 is the shared node and inter-
section for way1 and way2. Way1 has three nodes in the diagram, node1, node2
and node3 with four lanes and 45 miles per hour maximum speed. The algorithm
slices way1 into 4 edges, node1 to node2, node2 to node3, node3 to node2 and
node2 to node1. Then it marks each edge with 2 lanes and 45 mph maximum
allowed speed and computes the distance of this edge.

1. Process nodes Read the node table to Spark, then filter the nodes based on the
tag column. Signal nodes and regular road junctions are put in SignalRDD and
NodeRDD, respectively.

2. Process ways to edges After identifying all ways, we need to convert the ways to
edges. A way should be chopped to directed edges. In the way transformation, we
extract way id, way tags and node sequence. The tags may include speed limits,
number of lanes, one-way and so on. The detailed information of the road is stored
in each edge of this way. Eventually, GeoSparkSim obtains an edge table (see
Table 5).

Table 4 Node object Attribute Explanation

ID Unique identification
Coordinate Longitude and latitude
Intersect A Boolean value. Some nodes just connect two

edges on the same way but not the intersection
of two ways.

Type A node can be on a highway or residential street

Author's personal copy

1 3

Distributed and Parallel Databases

3. Join by node ids The edges from the last steps have head and tail nodes but do not
have the distance information. The distance is an important metric used in route
planning. GeoSparkSim will do a join between the edge table and node table such
that each edge can obtain the coordinates of its head and tail.

4. Compute distances GeoSparkSim then computes the distance of each edge accord-
ing to the coordinates. The final edge table will keep the distance column and all
other existing columns but drop the coordinates information.

6 Route planning

Vehicles in GeoSparkSim are moving objects. At each time step, each vehicle
appears at a place (e.g., coordinate). A vehicle follows its route step by step and
disappears when reaching the destination (e.g., coordinate). Therefore, before the
simulation starts, GeoSparkSim first needs to decide the initial locations of vehicles
and plan their routes during the simulation.

6.1 VehicleRDD Initialization

During the initialization phase, GeoSparkSim first initializes the status of vehicles
which will include a trip source and a destination for every vehicle such that the
vehicles will move from their sources to destinations during the simulation. Their
detailed routes will be generated in the next step.

Source coordinate There are some existing approaches to generate the mov-
ing objects source node, such as the data-space oriented approach (DSO) and
network-based approach (NB)[2]. The DSO approach first randomly generates
source points. Then it runs map matching to match points to their nearest nodes

Table 5 Edge object Attribute Explanation

ID Unique identification
Head Node
Tail Node
Distance The length of this edge
Speed limit Mile per hour
Lane The number of lanes on this edge

Fig. 3 Steps to process a road network in GeoSparkSim

Author's personal copy

 Distributed and Parallel Databases

1 3

in the road network. GeoSparkSim can also apply a spatial distribution, such
as the distribution of buildings, when generating random sources. Regions with
more buildings will produce more source nodes. The Network-Based approach
randomly selects nodes (road junctions) as sources. GeoSparkSim provides these
two options for the user. By default, DSO is enabled in GeoSparkSim.

Destination area The destination of a vehicle should not be too far or too
close from its source otherwise the simulation is not very meaningful. To yield
reasonable routes, GeoSparkSim uses the direct distance between the source and
destination to compute the destination area, which is the area that covers all pos-
sible destinations. As shown in Fig. 4a, we can draw a blue ring using the source
as the center. The radius of the inner circle is the minimum direct distance which
is always 1 kilometer. The radius of the outer circle is 1

10
 of the diagonal of the

user-selected region. GeoSparkSim takes a random point in the destination area
as the destination of the vehicle. To make sure the road network always covers
the destinations, GeoSpark adds a boundary buffer, max direct distance - min
direct distance, to the region selected by a user. That way, GeoSpark will down-
load a little larger road network but cover all possible destinations.

Destination coordinate The destination coordinate of a vehicle is deter-
mined by the source coordinate, route direct distance, and the angle [0, 360]
(see Fig. 4b). Route direct distance is a random value between the minimum
direct distance and maximum direct distance. The angle is also a random value
between 0 and 360. To be specific, the destination coordinate is computed by the
equation below.

A destination coordinate randomized by this method will fall in the destination area.

longitude =source.longitude + direct_distance ∗ sin(angle)

latitude =source.latitude + direct_distance ∗ cos(angle)

(b)(a)

Fig. 4 Destination coordinate system. The blue ring is the destination area (Color figure online)

Author's personal copy

1 3

Distributed and Parallel Databases

6.2 Route generation

After initializing VehicleRDD, GeoSparkSim will generate the shortest path for
every pair of source and destination. For the sake of routing speed, GeoSpark-
Sim leverages GraphHopper[24], an open-source route planning library to com-
pute the shortest path for every source and destination pair.

GraphHopper routing engine Graphhopper supports various routing algo-
rithms including Dijkstra and A star algorithms, for different purposes. Geo-
SparkSim uses Graphhopper to load processed road network and then builds
an index over the imported road network. This index pre-computes short paths
among common road junctions. Compared to other open-source routing engines,
Graphhopper has much less preprocessing time.

Parallel route generation GraphHopper can generate a single shortest path
every time based on the prebuilt index. In order to speed up the shortest path
computing process and leverage idle CPU cores, GeoSparkSim parallelizes the
process. By default, GeoSparkSim uses a thread pool with a number of threads
(8 threads by default) to generate shortest paths for many vehicles in parallel.
Each thread queries the same pre-built index and computes its own route. Fig-
ure 5 is an example of generating vehicles in parallel. A user requests the sim-
ulation with 100,000 vehicles. GeoSparkSim will divide the routing workload
to 3 threads. Each thread sequentially computes the shortest path for vehicles
assigned to this thread. When the threads finish their job, GeoSparkSim will col-
lect results and convert to VehicleRDD. Then the thread pool will be shut down
immediately.

7 Simulation‑aware data partitioning

Workload distribution in GeoSparkSim has a significant impact on performance.
Properly balancing the workload among machines can greatly shorten the execu-
tion time and reduce resource consumption in terms of memory footprint and
network bandwidth.

Fig. 5 Parallelized route generation

Author's personal copy

 Distributed and Parallel Databases

1 3

7.1 Different data partitioning approaches

Non-spatial partitioning The default data partitioning method in Spark such as
hash partitioner and round-robin partitioner exhibits good performance for regu-
lar ETL queries but does not well handle microscopic traffic simulation because it
does not take into account the spatial proximity. A non-spatial partitioner cannot
partition both VehicleRDD and road network in the same way. That means, dur-
ing the simulation period, a vehicle may not find the corresponding road network
on the same machine unless the entire road network is duplicated to this machine.
Duplicating the entire large road network to every machine in this cluster is not
scalable and dramatically slows down the processing speed.

Spatial partitioning Spatial partitioning in GeoSpark[19] partitions objects in
a RDD by their spatial proximity. Nearby objects are put in the same partition. Its
basic idea is to partition the datasets according to a grid file. The spatial partition-
ing approach can partition both VehicleRDD and road network (NodeRDD, Edg-
eRDD and SignalRDD) using the same partitioning approach. This way, vehicles
will be on the same machine with the corresponding part of the road network.
The grid file used in spatial partitioning has to adapt to a target static spatial dis-
tribution. There are several choices when selecting the target static distribution:

– Partition by road network The distribution of NodeRDD and EdgeRDD is
static but the distribution of NodeRDD and EdgeRDD is very different from
VehicleRDD because most of the vehicles stay on the major streets. The place
which has many nodes and edges may not have many vehicles passing by.

– Partition by source coordinates of vehicles Although the source coordinates
of vehicles are static, the distribution of vehicles changes over time. This will
cause unbalanced workload with increased simulation steps.

– Partition by planned routes of vehicles Planned routes of vehicles are trajecto-
ries that show a static distribution. A trajectory is a collection of coordinates
that vehicle will follow. Since the grid file is built upon the Minimum Bound-
ing Rectangles (MBRs) of objects, the MBRs of these trajectories are mostly
overlapped. It is not easy to make a clear cut among overlapped trajectories.

7.2 Simulation‑aware partitioning

The data partitioning layer in GeoSparkSim partitions the workload according
to both spatial and temporal attributes. It takes as input a VehicleRDD and road
network (NodeRDD, EdgeRDD, and SignalRDD) and spatially partitions these
RDDs according to planned vehicle routes in the upcoming temporal partition.
GeoSparkSim periodically invokes this layer to repartition these RDDs to make
sure that they always carry out balanced partitions. The simulation-aware vehicle
partitioning layer has the following advantages: (1) partition by short-term routes
instead of planned long routes to avoid cross-partition routes as many as possible

Author's personal copy

1 3

Distributed and Parallel Databases

(2) allow local microscopic traffic simulation inside each partition (3) support
dynamic vehicle movement distribution

To be precise, GeoSparkSim sets a temporal partition size (say., 2 min), divides
the simulation period to multiple temporal partitions, and runs the simulation for
each temporal partition one by one. Data in each temporal partition is partitioned
by spatial proximity. After completing the simulation in each temporal partition,
GeoSparkSim re-runs spatial partitioning on current data to adapt to new spatial
distribution. The detailed steps are as follows:

Step 1: Temporal partitioning Throughout the simulation, all vehicles will fol-
low specific routes planned by the route planning layer. However, these routes
generally span many blocks and tangle with others (depicted in Fig. 6). It is very
hard to do spatial partitioning according to their overall routes. To remedy that,
this step first partitions the simulation period into several equal-width temporal
partitions. Then it will simulate these partitions one by one. This way, GeoSpark-
Sim can easily do spatial partitioning over the temporal partition routes of these
vehicles which are much shorter.

Step 2: Estimate routes in the temporal partition Before simulating the trajec-
tories in each temporal partition, GeoSparkSim first needs to estimate the routes
in this partition. Given the overall planned route of a vehicle and its ending spa-
tial location in the last temporal partition, this step calculates its farthest route
using its steady speed. During the simulation of this temporal partition, although
each vehicle always follows the estimated route, it does not necessarily finish the
planned route because it may run into random delays caused by red signals and
traffic jams.

Step 3: Spatial partitioning This step utilizes the default spatial partitioning
methods in GeoSpark, Quad-Tree, to partition the VehicleRDD and road network.
It includes the following sub-steps: (1) create sample: draw a random sample over
the VehicleRDD to represent the spatial data distribution of its temporal parti-
tion routes (2) calculate boundaries: create a Quad-Tree structure on the sample’s
temporal partition routes and use the boundaries of leaf nodes as geometrical
boundaries of new RDD partitions (3) repartition VehicleRDD and road network:
vehicles whose estimated routes fall into the same boundary are sent to the same
partition. Vehicles whose estimated routes intersect several partition boundaries
are duplicated to all intersected partitions. Edges that intersect several partitions
will be duplicated. Note that, the geometrical boundaries in this step can produce

Fig. 6 GeoSparkSim temporal partitioning

Author's personal copy

 Distributed and Parallel Databases

1 3

roughly balanced partitions because this step builds balanced tree structures on a
real sample of estimated routes.

Step 4: Local microscopic traffic simulation This step performs the local micro-
scopic traffic simulation on each machine. Since VehicleRDD and road network are
partitioned according to the spatial proximity of the estimated short-term routes in
this spatial-temporal partition, this step does not have to communicate with other
partitions for nearby vehicle statuses via data shuffle. This step will be detailed in
the next section.

After simulating each temporal partition, GeoSparkSim will invoke Step 2–4 in
this layer to repartition the all RDDs for the upcoming temporal partition. This is to
maintain the workload balance because these vehicles keep moving in the simulated
region and their spatial distribution varies in different temporal partitions.

Figure 6 is an example of GeoSparkSim workflow. The user may ask GeoSpark-
Sim to simulate the traffic in Tempe, Arizona from 8:00 am to 9:00 am. GeoSpark-
Sim will first plan the routes for the VehicleRDD and do temporal partitioning to
partition this 1-hour period into 4 x 15-min temporal partitions. Then, for tempo-
ral partition 1 (8:00 am to 8:15 am), GeoSparkSim runs Step 2-4 to partition Vehi-
cleRDD and road network (see the middle part in Fig. 6) and then performs local
simulation in each machine. GeoSparkSim will execute the same steps for the rest of
the temporal partitions one by one.

7.3 Determine the best temporal partition period

GeoSparkSim divides the simulation period into a set of uniform temporal parti-
tions. It re-runs spatial-partitioning on VehicleRDD and road network after each
temporal partition. The repartitioning step should not happen too frequently because
each re-partitioning requires a time-consuming data shuffle. GeoSparkSim proposes
Algorithm 2 to determine the best temporal partition size (e.g., repartition period).
GeoSparkSim chooses five temporal partition size based on the simulation period,
then it takes 1% samples from vehicleRDD, and runs the simulation on this sample.
Eventually, GeoSparkSim finds the best one in terms of minimum simulation time.

Author's personal copy

1 3

Distributed and Parallel Databases

8 Distributed microscopic traffic simulation

8.1 Simulation algorithm

GeoSparkSim periodically runs repartitioning for vehicleRDD and applies the
same partition mechanism to VertexRDD, LinkRDD and SignalRDD. After parti-
tioning the RDDs, GeoSparkSim is ready to run the local microscopic simulation
on each RDD partition. All vehicles will follow their short-term trajectories in
this temporal partition. Every route starts from the last location of the vehicle.
This algorithm first calculates the number of GPS locations(step) needed to be
simulated for every vehicle in this temporal partition. This number can be easily
computed via the following equation:

where time step is the granularity of simulated trajectories (say, 1 s). It also indi-
cates the number of simulation iterations needed to be run by GeoSparkSim. The
simulation Algorithm 3 then runs a set of iterations and in each iteration, it first
updates all signals in this iteration. Some signals will turn to different colors. For
each vehicle, the algorithm then goes through other objects (signals, edges, and
vehicles) in the surrounding environment to check the following microscopic driv-
ing models (1) car-following: if vehicles in the front invade the safe distance buffer
of this vehicle, it will decelerate. A safe distance buffer is a small rectangle centered
at the vehicle itself. It describes the minimum safe distance between two vehicles to
avoid collisions. (2) traffic signal: a vehicle will decelerate if the traffic lights in the
front changes to red. (3) lane-changing: the algorithm considers multi-lanes and will
check the possible lane change opportunities and move the vehicle to the new lane.
After taking into account these models, GeoSparkSim then computes the current
position of this vehicle in the lane by time step and speed. Finally, GeoSparkSim
updates the vehicle with necessary status information such as speed, lane, and posi-
tion. After the local simulation on each RDD partition, GeoSparkSim will update
VehicleRDD status and persist the simulation results on HDFS. If some vehicles
reach their destinations before the simulation completes, GeoSparkSim will restart
them from their sources.

locations per vehicle =
temporal partition size

time step size

Algorithm 2: GeoSparkSim Repartition Algorithm
Data: Simulation period (SP), VehicleRDD, NodeRDD, LinkRDD and SignalRDD
Result: Best temporal partition size

1 Compute the five temporal partition size candidates: SP
10 , SP

8 , SP
6 , SP

4 , SP
2 ;

2 foreach temporal partition size candidate do
3 exeuction time = Run the simulation on VehicleRDD sample;
4 if exeuction time <minexecutiontime then
5 min execution time = exeuction time ;
6 Best temporal partition size = min execution time;
7 return Best temporal partition size

Author's personal copy

 Distributed and Parallel Databases

1 3

8.2 Microscopic simulation models

On each partition, GeoSpark runs a generic simulation algorithm which allows plug-
gable microscopic traffic models.

Car-following The car-following model uses the Intelligent-Driver Model (IDM)
[23] to update the current vehicle’s speed based on its distance to the vehicle ahead
of it. IDM decides the acceleration and deceleration for every time step in the simu-
lation. The parameters of IDM include the steady speed of this vehicle, accelera-
tion factor, and deceleration factor. If nearby vehicles are within the safe distance
buffer, this model will make the vehicle decelerate. If there are no nearby vehicles,
the model may accelerate the vehicle.

Lane-changing GeoSparkSim uses a general lane-changing model called
MOBIL[24]. A vehicle changes the lane based on the politeness factor. This model
avoids the collisions by using the safe distance buffer. If there are no other vehicles
inside the safe distance buffer, the vehicle might change its lane based on the polite-
ness factor. Otherwise, it will stay in the same lane. Some lanes information is from
OpenStreetMap and default lane is bidirectional with one lane each direction. In
addition, the direction information of lanes will also be considered because all lanes
are directed in a real road network. Vehicles can only move to the lanes that have the
same direction as their current lanes. Taking the car following decision from IDM,
GeoSparkSim uses MOBIL to calculate if the targeted new lane is allowed.

Traffic signals During the simulation, GeoSpark will update the signals, and the
vehicle will respond to corresponding lights. GeoSparkSim assigns initial signals
in SignalRDD randomly, and it exactly follows the green-yellow-red sequence. The
time duration for green light is 55 s, yellow light 5 s and red light 60 s. When a traf-
fic light appears in the safe distance of a vehicle, GeoSparkSim will check the status
of this light. The speed of this vehicle will be changed to 0 right away if the signal

Algorithm 3: GeoSparkSim Simulation Algorithm
Data: VehicleRDD and road network
Result: a sequence of VehicleRDDs

1 foreach temporal partition do
2 Partition VehicleRDD by vehicle planned routes in this temporal partition;
3 Apply same partition to NodeRDD, EdgeRDD and SignalRDD;
4 Zip VehicleRDD, NodeRDD, LinkRDD and SignalRDD by spatial proximity;
5 foreach partition in zipped RDDs do
6 foreach iteration in temporal simulation do
7 foreach signal S do
8 Update the timing and light of S;
9 foreach vehicle V do

10 if V not arrive destination then
11 Check the neighbor vehicle ahead;
12 Check the traffic light ahead;
13 Check the lane changing opportunity;
14 Compute V position, acceleration and velocity;
15 Compute coordinate by P and new lane id.;
16 else
17 Update V ’s current position to its source;
18 Update vehicleRDD and SignalRDD by the latest status;
19 Write the current VehicleRDD to HDFS;
20 return Simulation results

Author's personal copy

1 3

Distributed and Parallel Databases

is red. Vehicles keep the same passing speed at a green light and check the safe dis-
tance to pass at a yellow light.

9 Graphic user interface (GUI)

GeoSparkSim provides a graphic user interface that allows users to interact with the
system. The user can issue simulation requests and see visualized simulation results
via this interface. Figure 7a is a GUI example.

Interface components GeoSparkSim user interface contains three main parts:
input panel, map panel and report panel. The input panel on the right-top is the place
where users can describe their personalized simulation request by checking several
options and filling the parameters. The map panel on the left shows the viewport of
a road network with a map background. Users can zoom in/out and pan on this panel
to see different regions. The report panel on the right-bottom shows the status of
current simulation job and reports the current ongoing task.

Issue a simulation request The user can enter the number of vehicles and simula-
tion period. He or she can also select VehicleRDD initialization approach on the
input panel. Then the user is required to draw a rectangle on the map panel to spec-
ify the simulation region.

Visualize the simulation result Once the simulation is done, the user can opt to
ask for visualized simulation results. The GUI will create a new graphical frame
in order to render all road network elements and simulated vehicle locations every
simulation time step. In each time step, the graphical painter will update and redraw
the moving vehicles based on the current simulation step. Traffic signals will also be
updated. The simulation panel is created by Java Swing which can run on any plat-
form. The GUI keeps listening to the user events from the mouse wheel and mouse
motion. If the user zooms in or zooms out the simulation, the panel will repaint
all the elements coordinate projection in the simulators panel. If the user drags and
moves the center of the simulation, the panel will make corresponding coordinates

(a) (b)

Fig. 7 GeoSparkSim graphic user interface

Author's personal copy

 Distributed and Parallel Databases

1 3

projection changes. Figure 7b is a traffic visualization example using the road net-
work in Arizona State University.

10 Evaluation

10.1 Environment setting

Compared approaches (1) GeoSparkSim: the system proposed in this paper. (2)
Sumo[4]: a popular single-machine microscopic traffic simulator (3) SMARTS[7]: a
distributed microscopic traffic simulator using static z-curve partitioning.

Cluster All compared approaches are implemented with Apache Spark. We con-
duct the experiments on a cluster which has one master node and four worker nodes.
Each machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz per core),
100 GB memory, and 4 TB HDD. We also install Apache Hadoop 2.6 and Apache
Spark 2.3.2. We assign 10 GB memory to the Spark driver program that runs on the
master machine, which is quite enough to handle any necessary global computation.
Several monitoring software, such as Spark history server and Ganglia, are used to
measure the cluster status. Ganglia is a distributed monitoring system that can check
current CPU, memory, and network utilization of the cluster.

Parameters We change the following parameters throughout the experiments
(listed in Table 6, default values are in italics): (1) Number of vehicles: the number
of vehicles that need to be simulated. (2) Time step: the time interval between two
generated GPS locations. It is the simulation granularity. Time step has a significant
influence on simulation time. For example, if the period is 10 min and 1 s per step,
it requires 600 simulation iterations. If it is 0.8 s per step, 10 min need 750 steps.
(3) The number of partitions: the number of partitions in all RDDs (4) Temporal
partition size (min): the size of temporal partitions in GeoSparkSim. (5) Simulation
period: the overall period that GeoSparkSim wants to simulate.

Default values The numbers underlined in Table 6 are the default values used
in the experiment. By default, GeoSparkSim sets the temporary partition size to 2
min. In other words, it will invoke the spatial partitioning function to repartition the
VehicleRDD and road network after simulating every 2-min traffic. For instance,
assume a simulation workload (time step = 1 s, temporal partition size = 2 min,
simulation period = 8:00 to 8:15), GeoSparkSim will simulate the vehicle GPS loca-
tions from 8:00 to 8:15 at the granularity of 1 s. GeoSparkSim will repartition the

Table 6 Parameters Parameter Range

Number of vehicles (thousand) 100, 200, 300
Time step (s) 1, 0.8, 0.6, 0.4, 0.2
Number of partitions 1000, 1500, 3000
Temporal partition size (min) 1, 2, 4, 8, 10
Simulation period (min) 10, 30, 60, 120

Author's personal copy

1 3

Distributed and Parallel Databases

vehicleRDD and road network 8 times (8:00, 8:02, ..., 8:14). Besides, GeoSparkSim
uses the KDB-tree partitioning method from GeoSpark[19] in its spatial partitioning
step. If the simulation period is less than the repartition period, GeoSparkSim will
not invoke the repartition step.

Evaluation metrics We use the following metrics to measure the performance of
each approach: (1) Execution time: it is the time of running a GeoSparkSim simula-
tion workload. (2) Data size: it is the size of generated traffic data.

Tested data We use the road network of the Phoenix metropolitan area in the
experiment, comprising a total area of 250 thousand road junctions and 300 thou-
sand road segments.

10.2 The impact of the number of vehicles

In this experiment, we study the impact of different numbers of vehicles. We vary
the number from 100 thousand to 300 thousand and measure the execution time and
data size. The results are reported in Fig. 8. We also show the time taken by each
layer of GeoSparkSim. During the simulation, GeoSparkSim partitions the Vehi-
cleRDD twice (temporal partition size is 5 min).

As shown in Fig. 8a, both data importing part and route planning part take almost
constant time. This happens because we use the same road network for all experi-
ments. After loading the network, GeoSparkSim leverages GraphHopper to build a
shortest path index on it and creates a thread pool to access the index in parallel. The
thread pool significantly shortens the route planning time. On the other hand, both
vehicle partitioning layer and local microscopic simulation cost more time on the
larger number of vehicles. This makes sense because GeoSparkSim needs to spend
more time on shuffling data across the machines and simulating traffic on each parti-
tion if there are more vehicles in the VehicleRDD. In addition, the local microscopic
simulation on each VehicleRDD partition takes most of the simulation time. This
is because the local simulation costs lots of time to check the safe distance buffer
among different vehicles.

(b)(a)

Fig. 8 The impact of the number of vehicles

Author's personal copy

 Distributed and Parallel Databases

1 3

As depicted in Fig. 8a, as we increase vehicles in the VehicleRDD, the traffic data
generated by GeoSparkSim also increases. This makes sense because GeoSparkSim
will have to provide more GPS locations at each simulation time step if there are
more vehicles.

10.3 The impact of simulation periods

In this experiment, we further examine the impact of different simulation periods.
We vary the simulation period from 10 to 120 min. One hundred thousand vehicles
are simulated, the temporal partition size is 2 min, the number of partition is 1500
and the time step is 1 s. We report the results in Fig. 9. Data importing time and
route planning time are omitted in this figure because it is reported in Fig. 8a.

As shown in Fig. 9a, as the simulation period increases, GeoSparkSim spends
more time on simulating the traffic which makes sense because the system has to
calculate the vehicle movements for more time steps. The partitioning time is also
longer for the more extended simulation period. This happens because GeoSpark-
Sim repartitions the VehicleRDD, 5, 15, 30, and 60 times for different periods.

As depicted in Fig. 9b, with a larger simulation period, GeoSparkSim will gener-
ate more traffic data. This matches the expectation because the system will produce
GPS locations for more time steps. It is worth noting that, the simulation period can
be very large because it will only increase the execution time linearly. GeoSparkSim
will always partition the period to temporal partitions and run a simulation for them
one by one.

10.4 The impact of time steps

In this experiment, we explore the impact of the different simulation time step. We
vary the time step from 1 to 0.2 s. One hundred thousand vehicles are simulated, the

(b)(a)

Fig. 9 The impact of simulation period

Author's personal copy

1 3

Distributed and Parallel Databases

temporal partition size is 2 min, the number of partition is 1500 and the simulation
period is 10 min.

As described in Fig. 10, with larger time steps, GeoSparkSim will spend less time
on local microscopic simulation on each RDD partition. This happens because, given a
fixed simulation period, the system will generate fewer GPS locations if the time step is
larger. And, in each partition, GeoSparkSim takes fewer iterations to simulate the vehi-
cle movements. Data importing time and route planning time are omitted in this figure
because it is reported in Fig. 8a.

10.5 The impact of the number of spatial partitions

In this experiment, we study the impact of different numbers of spatial partitions. We
use three different numbers of partitions, 1000, 1500, and 3000. 100 thousand vehi-
cles are simulated, the time step is 1 s, the repartition period is 1 min and the simula-
tion period is 10 min. We report the results in Fig. 11. In this figure, the time spent on
partitioning is increasing when there are more partitions. This is reasonable because
more partitions will incur more shuffling overhead. However, too few partition or too
many partitions will both lead to high local simulation time. This makes sense because
too many partitions will generate small spatial boundaries of partitions. This eventually
leads to lots of duplicated vehicle routes and edges such that slows down the simula-
tion performance. On the other hand, too few spatial partitions may lead to unbalanced
partitions.

Fig. 10 The impact of time steps

Author's personal copy

 Distributed and Parallel Databases

1 3

10.6 The impact of temporal partition sizes

In this experiment, we analyze the impact of different temporal partition sizes. We
vary the temporal partition sizes from 1 to 10 min, 100 thousand vehicles are simu-
lated, the time step is 1 s, the number of partition is 1500 and the simulation period
is 10 min. Results are shown in Fig. 12.

As shown in Fig. 12, the partitioning time decreases when the temporal partition
size increases because a smaller temporal partition size means less re-partitioning

Fig. 11 The impact of spatial partitions

Fig. 12 The impact of temporal partition size

Author's personal copy

1 3

Distributed and Parallel Databases

steps. However, the local simulation shows the shortest execution time when the
temporal partition size is 2. This makes sense since large temporal partition will lead
to more vehicle route overlaps and small temporal partition will cause unnecessary
data computation.

10.7 Sumo and GeoSparkSim

In this experiment, we compare the data preparation time and simulation time
between GeoSparkSim and Sumo, a popular single-machine microscopic simulator,
using one thousand vehicles. The simulation part includes simulation-aware parti-
tioning and local simulation. The simulation period is 1 min and the time step is 1 s.
Sumo and GeoSparkSim adopt same driving models, IDM and MOBIL. In Fig. 13,
GeoSparkSim has 10 times faster data preparation speed and more than 100 times
faster simulation speed. This is reasonable because GeoSparkSim parallelizes both
data preparation and simulation.

10.8 SMARTS and GeoSparkSim

In this experiment, we compare the simulation time and speedup factor between
GeoSparkSim and SMARTS, a distributed microscopic traffic simulator. We simu-
late 100 thousand vehicles, and vary the simulation period from 10 to 120 min. The
data preparation time including vehicle generation and road network is omitted since
the difference between GeoSparkSim and SMARTS is similar to that between Geo-
SparkSim and Sumo.

(1)Speed up factor =
simulation period

time cost

Fig. 13 Sumo and GeoSparkSim

Author's personal copy

 Distributed and Parallel Databases

1 3

Speedup factor is defined in Eq. (1)[7]. It is the result of dividing the requested
simulation period by the actual execution time. For example, if the user requests
20 min of simulation and the simulator takes 10 min to generate the traffic, the
speedup factor is 2. SMARTS and GeoSparkSim use the same traffic models, IDM
and MOBIL. The simulation output for SMARTS is a collection of vehicle simula-
tion GPS coordinate by time steps, while GeoSparkSim contains not only the GPS
trajectories but also vehicle events in each step, such as acceleration and velocity.
As depicted in Fig. 14a, GeoSparkSim is 1.2 times faster than SMARTS when the
simulation period is 120 min. GeoSparkSim has a better performance on longer sim-
ulation periods because GeoSparkSim takes into account the dynamic spatial distri-
bution and tries to balance workload by periodically repartitioning the data while
SMARTS only partitions the data once. Figure 14b also indicates that GeoSparkSim
can speed up the simulation even when the request period is very long.

11 Conclusion

In this paper, we presented GeoSparkSim, a scalable traffic simulator which extends
Apache Spark to generate large-scale road network traffic data with microscopic
traffic models. The proposed system seamlessly integrates with a Spark-based spa-
tial data management system, GeoSpark, to deliver a holistic approach that allows
data scientists to simulate, analyze and visualize large-scale traffic data. Moreover,
GeoSparkSim equips VehicleRDD and parallelizes the simulation workload to a
set of VehicleRDD transformations. The proposed system also employs a simula-
tion-aware vehicle partitioning method to partition the workload among different
machines. The experimental analysis shows that GeoSparkSim can simulate the
movements of 300 thousand vehicles over a very large road network (250 thou-
sand road junctions and 300 thousand road segments) and outperform the existing
competitors.

(b)(a)

Fig. 14 SMARTS and GeoSparkSim

Author's personal copy

1 3

Distributed and Parallel Databases

Acknowledgements This work is supported by the National Science Foundation (NSF) under Grant
1845789.

References

 1. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service among user,
location and trajectory. IEEE Data Eng. Bull. 33(2), 32 (2010)

 2. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2),
153 (2002)

 3. Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: a benchmark for moving object databases.
VLDB J. 18(6), 1335 (2009). https ://doi.org/10.1007/s0077 8-009-0142-5

 4. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: SUMO (Simulation of Urban MObility)-an
open-source traffic simulation. In: Proceedings of the 4th middle East Symposium on Simulation
and Modelling (MESM20002), pp. 183–187 (2002)

 5. Nagel, K., Rickert, M.: Parallel implementation of the TRANSIMS micro-simulation. Parallel
Comput. 27(12), 1611 (2001)

 6. Klefstad, R., Zhang, Y., Lai, M., Jayakrishnan, R., Lavanya, R.: A distributed, scalable, and syn-
chronized framework for large-scale microscopic traffic simulation. In: Intelligent Transportation
Systems, 2005. Proceedings. 2005 IEEE, IEEE, pp. 813–818 (2005)

 7. Ramamohanarao, K., Xie, H., Kulik, L., Karunasekera, S., Tanin, E., Zhang, R., Khunayn, E.B.:
Smarts: scalable microscopic adaptive road traffic simulator. ACM Trans. Intell. Syst. Technol.
8(2), 26 (2017)

 8. Lu, J., Guting, R.H.: Parallel secondo: boosting database engines with Hadoop. In: International
Conference on Parallel and Distributed Systems, pp. 738 –743 (2012)

 9. Hadoop (n.d.). https ://hadoo p.apach e.org/
 10. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker,

S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation, NSDI, pp. 15–28 (2012)

 11. Guting, R.H., Almeida, V., Ansorge, D., Behr, T., Ding, Z., Hose, T., Hoffmann, F., Spieker-
mann, M., Telle, U.: Secondo: an extensible dbms platform for research prototyping and teach-
ing. In: Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on,
IEEE, pp. 1115–1116 (2005)

 12. Gipps’ model (2019). https ://en.wikip edia.org/wiki/Gipps %27_model
 13. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kam-

badur, P., Barrett,B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.:
Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In: Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 19-22, 2004, Proceedings, pp. 97–104
(2004)

 14. Waraich, R.A., Charypar, D., Balmer, M., Axhausen, K.W.: Performance improvements for large
scale traffic simulation in MATSim. In: 9th STRC Swiss Transport Research Conference: Proceed-
ings, vol. 565 (Swiss Transport Research Conference, 2009), vol. 565

 15. Paramics Microsimulation (2019). https ://www.param ics.co.uk/en/
 16. Vinoski, S.: CORBA: integrating diverse applications within distributed heterogeneous environ-

ments. IEEE Commun. Mag. 35(2), 46 (1997)
 17. OpenStreetMap (2019). http://www.opens treet map.org/
 18. Mokbel, M.F., Alarabi, L., Bao, J., Eldawy, A., Magdy, A., Sarwat, M., Waytas, E., Yackel, S.:

MNTG: an extensible web-based traffic generator. In: International Symposium on Spatial and Tem-
poral Databases, Springer, pp. 38–55 (2013)

 19. Yu, J., Zhang, Z., Sarwat, M.: Spatial Data Management in Apache Spark: The GeoSpark Perspec-
tive and Beyond. Geoinformatica (2018)

 20. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in SpatialHadoop. Proc. Int.
Conf. Very Large Data Bases 8(12), 1602 (2015)

Author's personal copy

https://doi.org/10.1007/s00778-009-0142-5
https://hadoop.apache.org/
https://en.wikipedia.org/wiki/Gipps%27_model
https://www.paramics.co.uk/en/
http://www.openstreetmap.org/

 Distributed and Parallel Databases

1 3

 21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Computing with
Working Sets. In: USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston,
MA, USA, June 22, 2010 (2010)

 22. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access the impact of
driving strategies on traffic capacity. Philos. Trans. R. Soc. Lond A 368(1928), 4585 (2010)

 23. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following mod-
els. Transp. Res. Rec. 1999(1), 86 (2007)

 24. Karich, P., Schröder, S.: Graphhopper. http://www.graph hoppe r.com, Last accessed 4(2), 15 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Jia Yu1 · Zishan Fu1 · Mohamed Sarwat1

 Zishan Fu
 zishanfu@asu.edu

 Mohamed Sarwat
 msarwat@asu.edu

1 Arizona State University, Tempe, AZ, USA

Author's personal copy

http://www.graphhopper.com
http://orcid.org/0000-0003-1340-6475

	Dissecting GeoSparkSim: a scalable microscopic road network traffic simulator in Apache Spark
	Abstract
	1 Introduction
	2 Related work
	2.1 State-of-the-art traffic simulators
	2.2 Comparison
	2.3 Distributed computation frameworks

	3 GeoSparkSim architecture
	4 VehicleRDD
	4.1 Vehicle
	4.2 VehicleRDD transformation

	5 Road network
	5.1 Raw road network data
	5.2 Road network in RDDs

	6 Route planning
	6.1 VehicleRDD Initialization
	6.2 Route generation

	7 Simulation-aware data partitioning
	7.1 Different data partitioning approaches
	7.2 Simulation-aware partitioning
	7.3 Determine the best temporal partition period

	8 Distributed microscopic traffic simulation
	8.1 Simulation algorithm
	8.2 Microscopic simulation models

	9 Graphic user interface (GUI)
	10 Evaluation
	10.1 Environment setting
	10.2 The impact of the number of vehicles
	10.3 The impact of simulation periods
	10.4 The impact of time steps
	10.5 The impact of the number of spatial partitions
	10.6 The impact of temporal partition sizes
	10.7 Sumo and GeoSparkSim
	10.8 SMARTS and GeoSparkSim

	11 Conclusion
	Acknowledgements
	References

