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Abstract
Researchers and practitioners have widely studied road network traffic data in dif-
ferent areas such as urban planning, traffic prediction and spatial-temporal data-
bases. For instance, researchers use such data to evaluate the impact of road network 
changes. Unfortunately, collecting large-scale high-quality urban traffic data requires 
tremendous efforts because participating vehicles must install global positioning 
system(GPS) receivers and administrators must continuously monitor these devices. 
There have been some urban traffic simulators trying to generate such data with dif-
ferent features. However, they suffer from two critical issues (1) Scalability: most 
of them only offer single-machine solution which is not adequate to produce large-
scale data. Some simulators can generate traffic in parallel but do not well balance 
the load among machines in a cluster. (2) Granularity: many simulators do not con-
sider microscopic traffic situations including traffic lights, lane changing, car follow-
ing. This paper proposed GeoSparkSim, a scalable traffic simulator which extends 
Apache Spark to generate large-scale road network traffic datasets with microscopic 
traffic simulation. The proposed system seamlessly integrates with a Spark-based 
spatial data management system, GeoSpark, to deliver a holistic approach that 
allows data scientists to simulate, analyze and visualize large-scale urban traffic 
data. To implement microscopic traffic models, GeoSparkSim employs a simulation-
aware vehicle partitioning method to partition vehicles among different machines 
such that each machine has a balanced workload. The experimental analysis shows 
that GeoSparkSim can simulate the movements of 300 thousand vehicles over a very 
large road network (250 thousand road junctions and 300 thousand road segments) 
and outperform the existing competitors.
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simulation

 * Jia Yu 
 jiayu2@asu.edu

Extended author information available on the last page of the article

Author's personal copy

http://orcid.org/0000-0003-1340-6475
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07306-x&domain=pdf


 Distributed and Parallel Databases

1 3

1 Introduction

Road network traffic data contains the trajectories of a set of vehicles moving over 
a road network. Each trajectory consists of a number of GPS points which capture 
the vehicle locations at every audited time step. Such traffic data has been widely 
studied by researchers and practitioners in different disciplines that include urban 
planning, traffic prediction and spatial-temporal databases. For instance, research-
ers use traffic data to evaluate the impact of road network changes. Unfortunately, 
although there are millions of vehicles driving in big cities, collecting large-scale 
high-quality traffic data requires tremendous efforts since participating vehicles 
must install GPS receivers and administrators must continuously monitor these 
devices. Researchers from Microsoft Research spent more than five years on col-
lecting 17621 trajectories over 182 volunteers [1]. Even if people manage to suc-
cessfully collect a limited amount of historical data, it usually has low quality and 
only covers a small geographical area.

To remedy that, researchers turn to traffic data simulators which can easily 
generate massive synthetic road network traffic data. There are several classic 
traffic simulators proposed in the past two decades including Brinkhoff[2] and 
BerlinMod [3]. The caveat of using these approaches is that they do not consider 
microscopic traffic models[4], and hence cannot simulate individual vehicle driv-
ing behaviors and do not consider different road situations such as traffic signals. 
Microscopic traffic models are very useful in practice since they can generate 
data close to reality. However, a simulation involving so many characteristics is 
computation-intensive and traditional microscopic simulators such as Sumo[4] 
are only able to simulate limited vehicles over a small road network.

Recently, there have been several research works that proposed scalable micro-
scopic simulators which can horizontally parallelize the simulation workload by 
adding more machines. However, performing microscopic traffic simulation in a 
distributed environment is very challenging because:

– Workload balance A scalable simulator needs to partition the workload into 
small chunks and assign them to different machines in a cluster. However, 
every time when a vehicle tries to change lane or accelerate, it has to check 
its distance to nearby vehicles. A proper partitioning method should take into 
account the spatial proximity of vehicles and minimize cross-partition data 
exchange.

– Dynamic distribution The spatial distribution of moving vehicles changes over 
time. Nearby vehicles may soon become far from each other. Simulators have 
to employ proper mechanisms to handle this change.

To deal with the challenges, TRANSIMS[5] opts to use graph partitioning 
approaches to partition road networks but does not consider their spatial distribu-
tion. The road network based partitioning methods may not accurately balance 
the vehicle simulation workload because most roads in a road network are idle 
and only major streets are full of vehicles. ParamGrid[6] proposes to partition 
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the geographical space to uniform grids. This does not work well if the vehicles 
and road networks have a skewed distribution. SMARTS[7] comes up with an 
approach that partitions the space into small chunks numbered in a Z-curve like 
order. It then assigns nearby chunks to the same machine. However, it makes an 
unrealistic assumption that the spatial distribution of moving vehicles is fixed.

In addition, most existing solutions are designed upon inefficient distributed 
models. For instance, Parallel BerlinMod[8] uses Hadoop MapReduce[9] and 
SMARTS[7] leverages simple TCP sockets. Apache Spark, on the other hand, pro-
vides a novel data abstraction called Resilient Distributed Datasets (RDDs)[10] that 
are collections of objects partitioned across a cluster of machines. Each RDD is 
built using parallelized transformations (filter, join or groupBy) that could be traced 
back to recover the RDD data. In memory RDDs allow Spark to outperform existing 
models.

This paper presents GeoSparkSim, a scalable traffic simulator, which extends 
Apache Spark to generate large-scale road network traffic data with microscopic 
traffic models. The proposed system seamlessly integrates with a Spark-based spa-
tial data management system, GeoSpark, to deliver a holistic approach that allows 
data scientists to simulate, analyze and visualize large-scale traffic data. Specifically, 
the proposed system has the following contributions:

• GeoSparkSim converts road networks and simulated vehicles to RDDs. Then 
it parallelizes each step in traffic simulation into a set of RDD transformations. 
Such transformation efficiently distributes the computation-intensive simulation 
workload to every machine in a cluster.

• GeoSparkSim takes into account microscopic traffic models such as traffic lights, 
lane changing, and car following. To achieve that, it employs a simulation-aware 
data partitioning method to partition vehicles and the road network among dif-
ferent machines such that each machine takes a roughly similar amount of sim-
ulation workload to achieve load balance. This partition mechanism intuitively 
considers both temporal attributes and spatial attributes of vehicles to handle the 
dynamic spatial distribution.

• A full-fledged prototype of GeoSparkSim is implemented in Apache Spark1,2. 
Our experimental analysis shows that GeoSparkSim can simulate the movements 
of 300 thousand vehicles over a very large road network (250 thousand road 
junctions and 300 thousand road segments).

Giving this outlook, this rest of this paper is presented as follows: Section 2 studies 
the related work. An overview of GeoSparkSim is given in Sect. 3. Section 4 details 
the internals of VehicleRDD. Road network construction is depicted in Sect. 5. Sec-
tion 6.2 illustrates how to determine the routes of numerous vehicles. The simula-
tion-aware data partitioning method is explained in Sect. 7. Section 8 describes the 
microscopic simulation models in GeoSparkSim. Section 9 shows the graphic user 

1 Source code: https ://githu b.com/zisha nfu/GeoSp arkSi m.
2 Demo video: https ://jiayu asu.githu b.io/files /video /geosp arksi m-demo.mp4.
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interface. A comprehensive experimental analysis is given in Sect. 10. Section 11 
concludes the paper.

2  Related work

2.1  State‑of‑the‑art traffic simulators

Brinkhoff[2] is a framework for generating network-based moving objects. In Brink-
hoff framework, the generated object distribution is correlated to the density of 
the network. It computes the fastest paths for moving objects which initially fol-
lows the uniform distribution and provides an interactive visualization interface for 
users. The input of Brinkhoff framework is the road network data and some relevant 
parameters. After triggering generation, source-destination pair will be generated by 
a motion computing algorithm. The shortest path between source and destination 
are computed by Dijkstra and A star path-finder algorithm. The trajectories will be 
collected and reported in text or database by Java Database Connectivity (JDBC). 
Brinkhoff generator preprocesses the road network to a compatible format, such as 
edge and node. Users can modify the configuration file and the parameters in UI to 
produce customized simulation.

BerlinMOD[3] is a benchmark for moving object databases based on SECONDO 
DBMS[11], an extensible DBMS architecture for large-scale data. BerlinMOD uses 
the approaches from Brinkhoff to create the start and destination node. The input of 
BerlinMOD is the start node, destination node and travel starting time. The system 
uses the Dijkstra algorithm, a well-known shortest path algorithm, to compute the 
route. It provides different sets of queries for benchmarking the moving objects. The 
user can also post SQL-like queries for moving objects.

Sumo[4] is an open-source continuous, microscopic and multi-modal traffic simu-
lation package. Multi-modal means the movement model includes not only cars but 
also pedestrian, public transportation, etc. For example, a person may travel by walk 
or by car.

– Components The car-following model used in Sumo is Gipps-model[12] which 
moderates the safe velocity and helps to avoid collisions. Sumo also deploys traf-
fic lights during the simulation. Sumo develops a network converter to convert 
various road network data into XML-description. Dijkstra algorithm is used to 
compute the shortest paths.

– Usability Sumo supports different types of moving objects, such as car, pedes-
trian, train, subway, ship, etc. Users can enter the types of moving objects, simu-
lation scale and region. The user could customize data and explore the insights 
on a visualization interface. After entering the required parameters, Sumo pre-
pares the road network and starts the simulation. When the simulation is finished, 
the interface will display the animated simulation.

TRANSIMS[5] is a distributed traffic microscopic simulator. TRANSIMS parallel-
izes the simulation process by utilizing MPI[13]. For example, a road network graph 
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is partitioned to several domains as the number of CPUs and each CPU simulates 
the traffic on its domain. Moreover, TRANSIMS proposes methods to minimize 
message passing costs and achieve load balancing.

– Graph partitioning TRANSIMS uses graph partitioning to cut the geographical 
region into several similar size domains. It cuts the network streets in the middle 
of the edges rather than intersections. Each CPU computes the local simulation 
for a given time period then CPUs exchange the messages of boundaries, then 
continue to run local simulations.

– Adaptive load balancing To be efficient, the loads on different CPUs should be 
as similar as possible. TRAMSIMS uses an adaptive algorithm to determine the 
load on each CPU. It first uses a naive approach to partition the graph for the 
first round local simulation then figures out better partitions based on the perfor-
mance of the first local simulation.

MATSim[14] is an open-source toolbox to run large-scale traffic simulations. MAT-
Sim offers a set of the flexible toolkit that users can customize the modules and do 
personalized simulation job. MATSim makes the most of the CPUs by multithread-
ing simulation jobs.

– Simulation model Generally, the approach to simulate moving objects in MAT-
Sim is to take advantage of the queue. MATSim applies a queue to execute the 
operations in road network edges, like a street. Each edge has a queue to report 
the entry time of moving objects. Adjacent edges collaborate to exchange mov-
ing objects to ensure the correctness of simulation. Based on this approach, 
MATSim designs QueueSim which is a fixed-increment time advance model. 
MATSim also provides another model in which the moving objects can change 
time steps according to events, such as entering a street, leaving a road street, etc.

– Parallelization model MATSim contains three main components, simulation 
units, messages and scheduler. Simulation units in MATSim are mainly about 
moving objects and road network edges. Messages are the information exchanged 
among different threads including vehicle simulation knowledge, such as a vehi-
cle leave a street and enter another street. The scheduler is a message priority 
queue that sorts message time and type to control objects’ actions. For example, 
the first moving object in the edge queue will be the first object to leave the edge 
because the object has the earliest entering time. By round robin to assign the 
same amount of workload to each thread, MATSim can handle simulation in par-
allel.

ParamGrid[6] is a distributed framework for large-scale microscopic traffic 
simulation.

– Network division In ParamGrid, a road network is divided into tiles of equal 
size zones with the number of rows and columns. The dividing process will 
generate the boundaries of zones. ParamGrid generates a set of the source-
destination matrices which store the approximate simulation workload of the 
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vehicle. The matrix will be applied to the dividing process to balance the 
workload. When a vehicle travels across tiles, with knowledge of all bounda-
ries, the global route thread will synchronize the status of these vehicles.

– Components ParamGrid uses[15], a suite of microscopic simulation mode-
ling tools, to do traffic simulation jobs. It employs CORBA[16], a distributed 
model designed to facilitate the collaboration between systems, to distribute 
the workload to a computer cluster.

– Architecture ParamGrid follows the master-slave distributed computing archi-
tecture. The master manages three services, global routing service, CORBA 
naming service and event service. It first cuts the network, globally assigns 
the name and location to each tile (tiles are distributed in the cluster), han-
dles cross tiles vehicles and provides a broadcast channel to synchronize the 
simulation time frame. The slaves take three plug-ins, object request broker, 
vehicle movement handler, simulation synchronization handler. A slave is 
responsible for managing vehicle movement, receiving transferred vehicles 
and synchronizing the simulation.

SMARTS[7] is a distributed large-scale microscopic simulator that is able to run 
jobs on multiple machines in parallel.

– Architecture SMARTS provides a comprehensive set of simulation features. It 
takes as input road network, routes, and a setup script. The road network data 
is extracted from OpenStreetMap[17] by loading the external OSM file. The 
vehicle routes are generated by the standard shortest path algorithm, Dijkstra 
algorithm. A route contains the vehicle’s ID, start time, type and a sequence 
of nodes that the vehicle will visit. The setup script is a configuration descrip-
tion of simulation parameters, such as maximum number of steps, number of 
generated random vehicles, maximum distance, number of updates per second, 
etc. After the data preparation, SMARTS uses several microscopic simulation 
models such as car-following, lane-changing, traffic light, route changing, traf-
fic rules, and calibrations. The simulation results will be stored on disk and 
visualized in a graphical user interface.

– Workload balancing The start coordinates of vehicles are generated following 
road network distribution. Thus SMARTS assumes the simulation workload 
is approximately equal to the road network distribution. The road network in 
SMARTS is divided into a set of uniform grids ordered by z-curve. SMARTS 
adopts a typical master-slave distributed computing model in which the master 
machine manages the simulation configuration jobs, such as assigning work-
load to slave and a slave is an executor to run the local simulation.

– Synchronization SMARTS proposed two simulation synchronization strate-
gies: centralized synchronization (CS) and decentralized synchronization 
(DS). In CS, the server asks all the workers to exchange information and simu-
late traffic at each time step. In DS, the master doesn’t play such a critical role 
and hold fewer pressures. The master only assigns the first round of simulation 
jobs, and workers will automatically run the simulation step by step.
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2.2  Comparison

Macroscopic traffic simulator Simulators in this category focus on general vehic-
ular flow in a transportation road network. All vehicles drive in a similar manner 
and simply move from the sources to the destinations step by step. Brinkhoff sim-
ulator[2] generates moving objects for every single road segment in a simulation 
period. BerlinMOD[3] is a popular moving object benchmark including a set of que-
ries and a data generator which is able to generate road network traffic data for a 
number of identifiable vehicles. MNTG[18] develops a wrapper of Brinkhoff frame-
work and BerlinMOD and provides a web service with a user-friendly and more 
accessible interface. Macroscopic simulators can quickly yield a massive amount of 
data because they are less computation-intensive. But the produced data may not 
be realistic and contain many vehicle collisions (e.g., vehicles have the same GPS 
locations).

Microscopic traffic simulator Compare to macroscopic simulators, microscopic 
traffic simulators pay more attention to the detailed mobility of each individual vehi-
cle and take into account many traffic events including lane changing, car following 
and traffic signals. Sumo[4] is one of the most popular microscopic simulators. It 
supports many microscopic traffic models such as lane changing, different right-of-
way rules, and traffic lights. Besides that, it also provides custom simulation data for 
different objects, such as vehicles, pedestrian, bicycles and railway. Such simulators 
are too computation-intensive because the driving behavior of a vehicle is affected 
by not only its own specification but also its nearby vehicles. For example, to simu-
late the next location of a vehicle, the simulator needs to check whether it is in a safe 
distance to other vehicles. Therefore, although microscopic simulators are able to 
generate realistic data, they suffer from the scalability issue.

It requires tremendous efforts to develop a scalable traffic simulator that fits a dis-
tributed environment because the simulator has to balance the workload to minimize 
data shuffle. Researchers have come up with many different approaches, explained 
below (see Table 1).

Non-spatial partitioning approach Some existing solutions partition the work-
load without taking into account the spatial proximity of the moving vehicles. 

Table 1  Comparison among different traffic simulators

Feature Simulation Scalability Workload Partition Distribution
Model Scalability Partitioning Organization Model

Brinkhoff[2] Macroscopic Single node – – –
Sumo[4] Microscopic Single node – – –
BerlinMOD[3] Macroscopic Distributed Hash Fixed MapReduce[9]
TRANSIMS[5] Microscopic Distributed Graph cut Fixed MPI[13]
MATSim[14] Microscopic Multi-thread Uniform grids Fixed Thread sync.
ParamGrid[6] Microscopic Distributed Uniform grids Fixed CORBA[16]
SMARTS[7] Microscopic Distributed Z-curve Fixed TCP sockets
GeoSparkSim Microscopic Distributed Quad-Tree Dynamic RDD
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Parallel-BerlinMOD[8] integrates BerlinMOD with a distributed DBMS called 
Parallel-Secondo[8] to deliver a scalable solution. It partitions the vehicles using 
generic partitioners such as hash partitioner and round-robin partitioner and paral-
lelizes the computation to a set of Hadoop MapReduce operations[9]. This approach 
is easy yet inappropriate for microscopic simulators because vehicles running on the 
same road segment are simulated by different machines. On the other hand, a micro-
scopic simulator TRANSIMS[5] proposes to use graph cuts to partition the large 
road network then apply the same partitions to vehicles. It leverages MPI[13] to 
coordinate different machines in a cluster. TRANSIMS may yield balanced network 
partitions such that each partition has a similar number of road nodes and segments 
but ignores an important fact: most road networks are idle and only major streets are 
full of vehicles.

Spatial partitioning approach Most scalable microscopic simulators use spatial 
partitioning methods to strike balanced workloads. MATSim[14] comes up with a 
method that splits the space to uniform grids (say, 5km*5km) then uses these grids 
to partition road networks and vehicles. It uses multi-threads to parallelize the com-
putation. ParamGrid[6] uses a partitioning method similar to MATSim but utilizes 
CORBA[16] framework which internally uses RPC. SMARTS[7] partitions the 
space to very small cells and orders them into a curve similar to Z-curve. Cells that 
have the same ID are assigned to the same machine. Although these approaches take 
into account spatial proximity, GeoSparkSim still outperforms them because (1) 
their partitioners cannot balance vehicles due to their skewed spatial distribution. 
GeoSpark[19] and SpatialHadoop[20] both show that KDB-Tree and Quad-Tree par-
titioning approaches are better. (2) the spatial distribution of moving vehicles keeps 
changing during the simulation. Instead of using fixed partitions, GeoSparkSim uses 
a spatial-temporal partitioning approach to automatically repartition vehicles over 
time.

2.3  Distributed computation frameworks

Existing solutions Most of the existing traffic simulators are designed upon inef-
ficient or inconvenient distributed programming models. Many of them still use 
message passaging services and do not employ advanced computation models and 
job schedulers. SMARTS[7] leverages simple TCP sockets, TRANSIMS[5] uses 
MPI[13], and MATSim[14] only utilizes multi-thread synchronization. On the other 
hand, Parallel BerlinMod[8] uses Hadoop MapReduce[9]. Although Hadoop-based 
systems achieve high scalability, they still exhibit slow run time performance since it 
persists all the intermediate data on disk.

Apache Sparkis a distributed general-purpose cluster computing framework 
which allows users to easily write distributed programs without being involved in 
the details of parallelism. It also can tolerate faults and scale out to many commod-
ity machines. It is an implementation of Resilient Distributed Datasets (RDD)[21]. 
An RDD is an in-memory dataset that is partitioned across machines in a cluster. 
RDDs are immutable and fault-tolerant data structures that allow users to persist 
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intermediate results in memory to speed up distributed query processing. In-mem-
ory RDDs allow Spark to outperform existing models such as Hadoop MapReduce.

GeoSpark[19] is an in-memory cluster computing framework for processing 
large-scale spatial data. It employs a technique called Spatial RDD which extends 
Apache Spark RDD to support geospatial objects, indices and queries. A Spatial-
RDD accommodates various types of spatial objects and provides spatial partition-
ing mechanism, such as R-tree, Quad-tree, and so on. It supports many spatial que-
ries, such as spatial range, join, and k-nearest neighbors algorithm (KNN) queries 
and is able to run them in parallel.

3  GeoSparkSim architecture

GeoSparkSim consists of a Graphic User Interface (GUI) and five simulation com-
ponents given below. GeoSparkSim works in concert with GeoSpark Spatial RDDs 
and Spark to deliver a holistic approach that allows data scientists to simulate, ana-
lyze and visualize large-scale urban traffic data (Fig. 1).

VehicleRDD GeoSparkSim equips a specialized VehicleRDD which extends Spark 
RDD to accommodate millions of individual vehicle records. The driving status of each 
vehicle has several attributes such as velocity, safe distance, GPS location and so on. 
Each vehicle also possesses several personal characteristics such as politeness factor 

Fig. 1  GeoSparkSim architecture
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and braking deceleration. The values of status change in a specific reasonable range 
according to the personal characteristics of vehicles. That way, each vehicle has its per-
sonalized behavior. The user can also define these behaviors via a vehicle configuration 
file.

Road network A road network describes the road situation of the specified simu-
lation region. In GeoSparkSim, the road network is composed by three RDDs, 
NodeRDD, EdgeRDD, and SignalRDD. NodeRDD contains all road junction points, 
and EdgeRDD contains all road segments. Moreover, SignalRDD describes specific 
scenarios such as traffic lights in the road network. GeoSparkSim constructs this net-
work using real geographical data from OpenStreetMap.

Route planning In this component, GeoSparkSim first creates the initial status for 
vehicles in VehicleRDD. Then it generates sources, and destinations for every vehicle 
following a particular spatial distribution. It leverages an open source library to build 
an index over the static road network. This index contains lots of pre-computed shortest 
paths. GeoSparkSim computes routes for every source and destination pair on top of 
the index, gathers the results and attaches routes to corresponding vehicles.

Simulation-aware data partitioning After route planning, every vehicle in Vehi-
cleRDD has a planned route. These vehicles will precisely follow the expected path, 
but each of them will show different microscopic driving behaviors. To simulate the 
microscopic model of a single vehicle, GeoSparkSim needs to know the status of 
nearby vehicles and road network information. To scale out such simulation to millions 
of vehicles in VehicleRDD, GeoSparkSim co-partitions the VehicleRDD and road net-
work according to their spatial proximity such that it can perform local microscopic 
simulation inside each VehicleRDD partition. The repartitioning occurs periodically to 
reflect the vehicle distribution because vehicles may move to different locations on the 
road network after a while.

Microscopic traffic computing Given a VehicleRDD and the road network parti-
tioned by the data partitioner, GeoSparkSim will then run the microscopic simulation 
in each VehicleRDD partition and its corresponding road network partition. This local 
simulation generates traffic with individual object mobility patterns which consist of 
vehicle status at each time step. Each vehicle has a safe distance to avoid collisions. 
A vehicle will moderate the speed if its next movement invades the safe distance to 
nearby vehicles or objects. Traffic signals at road intersections also affect the traffic.

Graphic user interface (GUI) Users can interact with GeoSparkSim by the front-end 
map interface which provides two functions: (1) it takes input parameters from users 
including the number of to-be-simulated vehicles, simulation region, vehicle configu-
ration, time step, simulation period and so on. A user can directly draw a rectangular 
window on the map and fill in necessary parameters. Then GeoSparkSim backend will 
download the road network of the specified region, generate simulated traffic data and 
visualize back to GUI.
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4  VehicleRDD

GeoSparkSim VehicleRDDs are in-memory distributed datasets that extend tradi-
tional RDD to accommodate vehicle objects in Apache Spark. VehicleRDD consists 
of a set of vehicles with its randomized attributes and status such that yields arbi-
trary trajectories. Each VehicleRDD consists of many partitions and each partition 
contains thousands of vehicles. GeoSparkSim performs simulation in each partition 
and these partitions compute simulation in parallel by distributing the VehicleRDDs 
across the cluster.

4.1  Vehicle

A vehicle object in GeoSparkSim consists of two parts (1) vehicle attribute: defines 
driving behaviors. These attributes are parameters used in driving models and will 
affect the randomness factor in the running status. (2) running status: describes the 
current state of a vehicle. A status contains many attributes which can generate rich 
simulation information for the user. The value ranges of these attributes are deter-
mined by the driving model.

Attributes A vehicle has more than 10 attributes. Their names and explanation 
are given in Table 2. The values of these attributes (except source, destination and 
route) are randomly generated according to the value ranges specified in the vehicle 
configuration file. The user can also change the value range in the configuration file 
to produce customized simulation results. GeoSparkSim integrates two microscopic 
driving models, IDM[22] and MOBIL[23], in its simulation algorithm. The attrib-
utes listed in the table are the parameters used in the driving models. The simulation 
algorithm in Sect. 8 will utilize these attributes to generate vehicle statuses at differ-
ent time steps.

Table 2  The attributes of a vehicle

Attribute Explanation

Source The starting coordinate of this vehicle
Destination The final coordinate of this vehicle
Route The planned route from the source to destination. It is a sequence of coordinates
Plate number The unique identification of a vehicle. It is a random combination of 5 characters 

from English letters and number 0–9
Car length The length of the vehicle (e.g., 1 m). This is used when compute the safe distance 

between two vehicles
Acceleration The acceleration of this vehicle (e.g., 2m/s

2)
Brake deceleration The deceleration of this vehicle (e.g., −2m/s

2)
Safe distance If the distance between two cars is shorter than this safe distance (e.g., 1 meter), a 

car collision will happen.
Default speed The default speed (e.g., 5 m/s). A vehicle will always accelerate to this speed. Then 

it will keep this speed if no event triggers a deceleration
Politeness factor A value between (0, 1). A vehicle with a lower politeness factor will change its lane 

more frequently
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Running status A running status is the status of a vehicle at a time step. The 
detailed items recorded in a running status is given in Table 3. During the simula-
tion, every vehicle moves along its planned route over and over. But at every time 
step, it may stop at different traffic signals, run on separate lanes and generate vari-
ous acceleration/deceleration events based on microscopic driving models.

4.2  VehicleRDD transformation

To simulate the traffic of numerous vehicles in a specific period, GeoSparkSim gen-
erates GPS locations of these vehicles for every simulation time step. For instance, if 
the period is one day and the simulation time step is 1 hour, GeoSparkSim will take 
a snapshot of the traffic every hour from 0:00 am to midnight. To achieve that, Geo-
SparkSim first creates an initial VehicleRDD, and all vehicles stay at the origins of 
their routes. Then it keeps transforming the VehicleRDD via a map operation. Each 
RDD transformation will compute the new running status of vehicles according to 
their driving models. Every transformation produces a new VehicleRDD based on 
its parent VehicleRDD. The running status computation uses microscopic simula-
tion models and will be detailed in Sect.  8. In other words, a VehicleRDD is a snap-
shot of current vehicle movements over the road network.

5  Road network

A road network is a graph that describes road paths and junctions. It is the funda-
mental infrastructure of any traffic simulator. An actual road network is extremely 
complex and requires tremendous efforts on the ETL phase (Extract, Transformation 
and Load). In order to achieve high performance, GeoSparkSim loads all road net-
work elements to three RDDs, NodeRDD, EdgeRDD and SignalRDD.

5.1  Raw road network data

GeoSparkSim supports OpenStreetMap (OSM) XML road network data format, one 
of the most common road network formats. OpenStreetMap provides a thorough 

Table 3  The running status of a vehicle

Status Explanation

Current position The current coordinate of this vehicle
Current lane The lane that the vehicle is going through now. An edge may have many lanes
Current edge The edge that the vehicle is going through no
Current path The edges that the vehicle will go through in the current temporal partition 

(explained in Sect. 8)
Current path length The length of each edge in the current pat
Current speed The current speed of the vehicle
Current signal in front Indicates whether there is a red traffic light in front
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description of road networks on the earth. Figure 2 is an example of OSM road net-
work information. After a user selects the region, GeoSparkSim will fetch XML data 
from OpenStreetMap and use a sinker software provided by OSM to transform the 
data to structured tables. The transformed data is saved as parquet format in HDFS 
or local disk (see Fig. 3).

An OSM road network consists of a node table and a way table. The former 
contains all nodes in the selected region and the latter includes all ways (e.g., Wall 
Street) in this region. A node usually is the junction, turning point or end point of 
the way. A node consists of id, latitude, longitude, and tags. A way consists of a 
sequence of edges marked out by nodes. A node on this way is a junction where two 
or more edges meet. These nodes are the vertex in the graph.

5.2  Road network in RDDs

The raw OSM data contains nodes and ways, but GeoSpark road network needs 
nodes, edges and signals. To achieve that, GeoSparkSim reads nodes and ways into 
Spark and runs a set of data cleaning and transformation to obtain specialized RDDs 
(see Fig. 3). Nodes represent intersections along the roads and edges represent the 
segments that connect two intersections.

Fig. 2  The raw road network data
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Algorithm 1: Transform raw OSM data
Data: raw nodes, raw ways
Result: nodes, links, lights

1 Filter traffic signal nodes from raw nodes;
2 Break raw ways to edges;
3 Join nodes with edges by node ids;
4 Compute the distance of each edge;
5 return Road Network(nodeRDD, linkRDD, lightRDD)

Road network in GeoSparkSim RDDs A road network in GeoSpark consists of 
three specialized RDDs: (1) NodeRDD contains all needed nodes from an arbi-
trarily selected region, and each node is a road junction that connects two edges. 
Each node has four attributes as shown in Table 4. (2) NodeRDD accommodates 
all necessary edges, and each edge is a road segment which is a straight way 
between two nodes. Each edge has many attributes as depicted in Table 2. (3) Sig-
nalRDD includes all signal nodes in the simulation region. Each signal contains 
three main attributes (1) the node ID (2) the controlled way ID (3) coordinate.

Algorithm of transforming OSM data GeoSparkSim equips an algorithm (see 
Algorithm  1) to clean the original OSM data and transform to three special-
ized RDDs. Figure  2 is an example of a small road network. Way1 and way2 
cross each other, and there are three nodes. Node2 is the shared node and inter-
section for way1 and way2. Way1 has three nodes in the diagram, node1, node2 
and node3 with four lanes and 45 miles per hour maximum speed. The algorithm 
slices way1 into 4 edges, node1 to node2, node2 to node3, node3 to node2 and 
node2 to node1. Then it marks each edge with 2 lanes and 45 mph maximum 
allowed speed and computes the distance of this edge. 

1. Process nodes Read the node table to Spark, then filter the nodes based on the 
tag column. Signal nodes and regular road junctions are put in SignalRDD and 
NodeRDD, respectively.

2. Process ways to edges After identifying all ways, we need to convert the ways to 
edges. A way should be chopped to directed edges. In the way transformation, we 
extract way id, way tags and node sequence. The tags may include speed limits, 
number of lanes, one-way and so on. The detailed information of the road is stored 
in each edge of this way. Eventually, GeoSparkSim obtains an edge table (see 
Table 5).

Table 4  Node object Attribute Explanation

ID Unique identification
Coordinate Longitude and latitude
Intersect A Boolean value. Some nodes just connect two 

edges on the same way but not the intersection 
of two ways.

Type A node can be on a highway or residential street
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3. Join by node ids The edges from the last steps have head and tail nodes but do not 
have the distance information. The distance is an important metric used in route 
planning. GeoSparkSim will do a join between the edge table and node table such 
that each edge can obtain the coordinates of its head and tail.

4. Compute distances GeoSparkSim then computes the distance of each edge accord-
ing to the coordinates. The final edge table will keep the distance column and all 
other existing columns but drop the coordinates information.

6  Route planning

Vehicles in GeoSparkSim are moving objects. At each time step, each vehicle 
appears at a place (e.g., coordinate). A vehicle follows its route step by step and 
disappears when reaching the destination (e.g., coordinate). Therefore, before the 
simulation starts, GeoSparkSim first needs to decide the initial locations of vehicles 
and plan their routes during the simulation.

6.1  VehicleRDD Initialization

During the initialization phase, GeoSparkSim first initializes the status of vehicles 
which will include a trip source and a destination for every vehicle such that the 
vehicles will move from their sources to destinations during the simulation. Their 
detailed routes will be generated in the next step.

Source coordinate There are some existing approaches to generate the mov-
ing objects source node, such as the data-space oriented approach (DSO) and 
network-based approach (NB)[2]. The DSO approach first randomly generates 
source points. Then it runs map matching to match points to their nearest nodes 

Table 5  Edge object Attribute Explanation

ID Unique identification
Head Node
Tail Node
Distance The length of this edge
Speed limit Mile per hour
Lane The number of lanes on this edge

Fig. 3  Steps to process a road network in GeoSparkSim
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in the road network. GeoSparkSim can also apply a spatial distribution, such 
as the distribution of buildings, when generating random sources. Regions with 
more buildings will produce more source nodes. The Network-Based approach 
randomly selects nodes (road junctions) as sources. GeoSparkSim provides these 
two options for the user. By default, DSO is enabled in GeoSparkSim.

Destination area The destination of a vehicle should not be too far or too 
close from its source otherwise the simulation is not very meaningful. To yield 
reasonable routes, GeoSparkSim uses the direct distance between the source and 
destination to compute the destination area, which is the area that covers all pos-
sible destinations. As shown in Fig. 4a, we can draw a blue ring using the source 
as the center. The radius of the inner circle is the minimum direct distance which 
is always 1 kilometer. The radius of the outer circle is 1

10
 of the diagonal of the 

user-selected region. GeoSparkSim takes a random point in the destination area 
as the destination of the vehicle. To make sure the road network always covers 
the destinations, GeoSpark adds a boundary buffer, max direct distance - min 
direct distance, to the region selected by a user. That way, GeoSpark will down-
load a little larger road network but cover all possible destinations.

Destination coordinate The destination coordinate of a vehicle is deter-
mined by the source coordinate, route direct distance, and the angle [0, 360] 
(see Fig.  4b). Route direct distance is a random value between the minimum 
direct distance and maximum direct distance. The angle is also a random value 
between 0 and 360. To be specific, the destination coordinate is computed by the 
equation below.

A destination coordinate randomized by this method will fall in the destination area.

longitude =source.longitude + direct_distance ∗ sin(angle)

latitude =source.latitude + direct_distance ∗ cos(angle)

(b)(a)

Fig. 4  Destination coordinate system. The blue ring is the destination area (Color figure online)
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6.2  Route generation

After initializing VehicleRDD, GeoSparkSim will generate the shortest path for 
every pair of source and destination. For the sake of routing speed, GeoSpark-
Sim leverages GraphHopper[24], an open-source route planning library to com-
pute the shortest path for every source and destination pair.

GraphHopper routing engine Graphhopper supports various routing algo-
rithms including Dijkstra and A star algorithms, for different purposes. Geo-
SparkSim uses Graphhopper to load processed road network and then builds 
an index over the imported road network. This index pre-computes short paths 
among common road junctions. Compared to other open-source routing engines, 
Graphhopper has much less preprocessing time.

Parallel route generation GraphHopper can generate a single shortest path 
every time based on the prebuilt index. In order to speed up the shortest path 
computing process and leverage idle CPU cores, GeoSparkSim parallelizes the 
process. By default, GeoSparkSim uses a thread pool with a number of threads 
(8 threads by default) to generate shortest paths for many vehicles in parallel. 
Each thread queries the same pre-built index and computes its own route. Fig-
ure 5 is an example of generating vehicles in parallel. A user requests the sim-
ulation with 100,000 vehicles. GeoSparkSim will divide the routing workload 
to 3 threads. Each thread sequentially computes the shortest path for vehicles 
assigned to this thread. When the threads finish their job, GeoSparkSim will col-
lect results and convert to VehicleRDD. Then the thread pool will be shut down 
immediately.

7  Simulation‑aware data partitioning

Workload distribution in GeoSparkSim has a significant impact on performance. 
Properly balancing the workload among machines can greatly shorten the execu-
tion time and reduce resource consumption in terms of memory footprint and 
network bandwidth.

Fig. 5  Parallelized route generation
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7.1  Different data partitioning approaches

Non-spatial partitioning The default data partitioning method in Spark such as 
hash partitioner and round-robin partitioner exhibits good performance for regu-
lar ETL queries but does not well handle microscopic traffic simulation because it 
does not take into account the spatial proximity. A non-spatial partitioner cannot 
partition both VehicleRDD and road network in the same way. That means, dur-
ing the simulation period, a vehicle may not find the corresponding road network 
on the same machine unless the entire road network is duplicated to this machine. 
Duplicating the entire large road network to every machine in this cluster is not 
scalable and dramatically slows down the processing speed.

Spatial partitioning Spatial partitioning in GeoSpark[19] partitions objects in 
a RDD by their spatial proximity. Nearby objects are put in the same partition. Its 
basic idea is to partition the datasets according to a grid file. The spatial partition-
ing approach can partition both VehicleRDD and road network (NodeRDD, Edg-
eRDD and SignalRDD) using the same partitioning approach. This way, vehicles 
will be on the same machine with the corresponding part of the road network. 
The grid file used in spatial partitioning has to adapt to a target static spatial dis-
tribution. There are several choices when selecting the target static distribution:

– Partition by road network The distribution of NodeRDD and EdgeRDD is 
static but the distribution of NodeRDD and EdgeRDD is very different from 
VehicleRDD because most of the vehicles stay on the major streets. The place 
which has many nodes and edges may not have many vehicles passing by.

– Partition by source coordinates of vehicles Although the source coordinates 
of vehicles are static, the distribution of vehicles changes over time. This will 
cause unbalanced workload with increased simulation steps.

– Partition by planned routes of vehicles Planned routes of vehicles are trajecto-
ries that show a static distribution. A trajectory is a collection of coordinates 
that vehicle will follow. Since the grid file is built upon the Minimum Bound-
ing Rectangles (MBRs) of objects, the MBRs of these trajectories are mostly 
overlapped. It is not easy to make a clear cut among overlapped trajectories.

7.2  Simulation‑aware partitioning

The data partitioning layer in GeoSparkSim partitions the workload according 
to both spatial and temporal attributes. It takes as input a VehicleRDD and road 
network (NodeRDD, EdgeRDD, and SignalRDD) and spatially partitions these 
RDDs according to planned vehicle routes in the upcoming temporal partition. 
GeoSparkSim periodically invokes this layer to repartition these RDDs to make 
sure that they always carry out balanced partitions. The simulation-aware vehicle 
partitioning layer has the following advantages: (1) partition by short-term routes 
instead of planned long routes to avoid cross-partition routes as many as possible 
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(2) allow local microscopic traffic simulation inside each partition (3) support 
dynamic vehicle movement distribution

To be precise, GeoSparkSim sets a temporal partition size (say., 2 min), divides 
the simulation period to multiple temporal partitions, and runs the simulation for 
each temporal partition one by one. Data in each temporal partition is partitioned 
by spatial proximity. After completing the simulation in each temporal partition, 
GeoSparkSim re-runs spatial partitioning on current data to adapt to new spatial 
distribution. The detailed steps are as follows:

Step 1: Temporal partitioning Throughout the simulation, all vehicles will fol-
low specific routes planned by the route planning layer. However, these routes 
generally span many blocks and tangle with others (depicted in Fig. 6). It is very 
hard to do spatial partitioning according to their overall routes. To remedy that, 
this step first partitions the simulation period into several equal-width temporal 
partitions. Then it will simulate these partitions one by one. This way, GeoSpark-
Sim can easily do spatial partitioning over the temporal partition routes of these 
vehicles which are much shorter.

Step 2: Estimate routes in the temporal partition Before simulating the trajec-
tories in each temporal partition, GeoSparkSim first needs to estimate the routes 
in this partition. Given the overall planned route of a vehicle and its ending spa-
tial location in the last temporal partition, this step calculates its farthest route 
using its steady speed. During the simulation of this temporal partition, although 
each vehicle always follows the estimated route, it does not necessarily finish the 
planned route because it may run into random delays caused by red signals and 
traffic jams.

Step 3: Spatial partitioning This step utilizes the default spatial partitioning 
methods in GeoSpark, Quad-Tree, to partition the VehicleRDD and road network. 
It includes the following sub-steps: (1) create sample: draw a random sample over 
the VehicleRDD to represent the spatial data distribution of its temporal parti-
tion routes (2) calculate boundaries: create a Quad-Tree structure on the sample’s 
temporal partition routes and use the boundaries of leaf nodes as geometrical 
boundaries of new RDD partitions (3) repartition VehicleRDD and road network: 
vehicles whose estimated routes fall into the same boundary are sent to the same 
partition. Vehicles whose estimated routes intersect several partition boundaries 
are duplicated to all intersected partitions. Edges that intersect several partitions 
will be duplicated. Note that, the geometrical boundaries in this step can produce 

Fig. 6  GeoSparkSim temporal partitioning
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roughly balanced partitions because this step builds balanced tree structures on a 
real sample of estimated routes.

Step 4: Local microscopic traffic simulation This step performs the local micro-
scopic traffic simulation on each machine. Since VehicleRDD and road network are 
partitioned according to the spatial proximity of the estimated short-term routes in 
this spatial-temporal partition, this step does not have to communicate with other 
partitions for nearby vehicle statuses via data shuffle. This step will be detailed in 
the next section.

After simulating each temporal partition, GeoSparkSim will invoke Step 2–4 in 
this layer to repartition the all RDDs for the upcoming temporal partition. This is to 
maintain the workload balance because these vehicles keep moving in the simulated 
region and their spatial distribution varies in different temporal partitions.

Figure 6 is an example of GeoSparkSim workflow. The user may ask GeoSpark-
Sim to simulate the traffic in Tempe, Arizona from 8:00 am to 9:00 am. GeoSpark-
Sim will first plan the routes for the VehicleRDD and do temporal partitioning to 
partition this 1-hour period into 4 x 15-min temporal partitions. Then, for tempo-
ral partition 1 (8:00 am to 8:15 am), GeoSparkSim runs Step 2-4 to partition Vehi-
cleRDD and road network (see the middle part in Fig. 6) and then performs local 
simulation in each machine. GeoSparkSim will execute the same steps for the rest of 
the temporal partitions one by one.

7.3  Determine the best temporal partition period

GeoSparkSim divides the simulation period into a set of uniform temporal parti-
tions. It re-runs spatial-partitioning on VehicleRDD and road network after each 
temporal partition. The repartitioning step should not happen too frequently because 
each re-partitioning requires a time-consuming data shuffle. GeoSparkSim proposes 
Algorithm 2 to determine the best temporal partition size (e.g., repartition period). 
GeoSparkSim chooses five temporal partition size based on the simulation period, 
then it takes 1% samples from vehicleRDD, and runs the simulation on this sample. 
Eventually, GeoSparkSim finds the best one in terms of minimum simulation time.
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8  Distributed microscopic traffic simulation

8.1  Simulation algorithm

GeoSparkSim periodically runs repartitioning for vehicleRDD and applies the 
same partition mechanism to VertexRDD, LinkRDD and SignalRDD. After parti-
tioning the RDDs, GeoSparkSim is ready to run the local microscopic simulation 
on each RDD partition. All vehicles will follow their short-term trajectories in 
this temporal partition. Every route starts from the last location of the vehicle. 
This algorithm first calculates the number of GPS locations(step) needed to be 
simulated for every vehicle in this temporal partition. This number can be easily 
computed via the following equation:

where time step is the granularity of simulated trajectories (say, 1 s). It also indi-
cates the number of simulation iterations needed to be run by GeoSparkSim. The 
simulation Algorithm  3 then runs a set of iterations and in each iteration, it first 
updates all signals in this iteration. Some signals will turn to different colors. For 
each vehicle, the algorithm then goes through other objects (signals, edges, and 
vehicles) in the surrounding environment to check the following microscopic driv-
ing models (1) car-following: if vehicles in the front invade the safe distance buffer 
of this vehicle, it will decelerate. A safe distance buffer is a small rectangle centered 
at the vehicle itself. It describes the minimum safe distance between two vehicles to 
avoid collisions. (2) traffic signal: a vehicle will decelerate if the traffic lights in the 
front changes to red. (3) lane-changing: the algorithm considers multi-lanes and will 
check the possible lane change opportunities and move the vehicle to the new lane. 
After taking into account these models, GeoSparkSim then computes the current 
position of this vehicle in the lane by time step and speed. Finally, GeoSparkSim 
updates the vehicle with necessary status information such as speed, lane, and posi-
tion. After the local simulation on each RDD partition, GeoSparkSim will update 
VehicleRDD status and persist the simulation results on HDFS. If some vehicles 
reach their destinations before the simulation completes, GeoSparkSim will restart 
them from their sources.

locations per vehicle =
temporal partition size

time step size

Algorithm 2: GeoSparkSim Repartition Algorithm
Data: Simulation period (SP), VehicleRDD, NodeRDD, LinkRDD and SignalRDD
Result: Best temporal partition size

1 Compute the five temporal partition size candidates: SP
10 , SP

8 , SP
6 , SP

4 , SP
2 ;

2 foreach temporal partition size candidate do
3 exeuction time = Run the simulation on VehicleRDD sample;
4 if exeuction time <minexecutiontime then
5 min execution time = exeuction time ;
6 Best temporal partition size = min execution time;
7 return Best temporal partition size
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8.2  Microscopic simulation models

On each partition, GeoSpark runs a generic simulation algorithm which allows plug-
gable microscopic traffic models.

Car-following The car-following model uses the Intelligent-Driver Model (IDM)
[23] to update the current vehicle’s speed based on its distance to the vehicle ahead 
of it. IDM decides the acceleration and deceleration for every time step in the simu-
lation. The parameters of IDM include the steady speed of this vehicle, accelera-
tion factor, and deceleration factor. If nearby vehicles are within the safe distance 
buffer, this model will make the vehicle decelerate. If there are no nearby vehicles, 
the model may accelerate the vehicle.

Lane-changing GeoSparkSim uses a general lane-changing model called 
MOBIL[24]. A vehicle changes the lane based on the politeness factor. This model 
avoids the collisions by using the safe distance buffer. If there are no other vehicles 
inside the safe distance buffer, the vehicle might change its lane based on the polite-
ness factor. Otherwise, it will stay in the same lane. Some lanes information is from 
OpenStreetMap and default lane is bidirectional with one lane each direction. In 
addition, the direction information of lanes will also be considered because all lanes 
are directed in a real road network. Vehicles can only move to the lanes that have the 
same direction as their current lanes. Taking the car following decision from IDM, 
GeoSparkSim uses MOBIL to calculate if the targeted new lane is allowed.

Traffic signals During the simulation, GeoSpark will update the signals, and the 
vehicle will respond to corresponding lights. GeoSparkSim assigns initial signals 
in SignalRDD randomly, and it exactly follows the green-yellow-red sequence. The 
time duration for green light is 55 s, yellow light 5 s and red light 60 s. When a traf-
fic light appears in the safe distance of a vehicle, GeoSparkSim will check the status 
of this light. The speed of this vehicle will be changed to 0 right away if the signal 

Algorithm 3: GeoSparkSim Simulation Algorithm
Data: VehicleRDD and road network
Result: a sequence of VehicleRDDs

1 foreach temporal partition do
2 Partition VehicleRDD by vehicle planned routes in this temporal partition;
3 Apply same partition to NodeRDD, EdgeRDD and SignalRDD;
4 Zip VehicleRDD, NodeRDD, LinkRDD and SignalRDD by spatial proximity;
5 foreach partition in zipped RDDs do
6 foreach iteration in temporal simulation do
7 foreach signal S do
8 Update the timing and light of S;
9 foreach vehicle V do

10 if V not arrive destination then
11 Check the neighbor vehicle ahead;
12 Check the traffic light ahead;
13 Check the lane changing opportunity;
14 Compute V position, acceleration and velocity;
15 Compute coordinate by P and new lane id.;
16 else
17 Update V ’s current position to its source;
18 Update vehicleRDD and SignalRDD by the latest status;
19 Write the current VehicleRDD to HDFS;
20 return Simulation results
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is red. Vehicles keep the same passing speed at a green light and check the safe dis-
tance to pass at a yellow light.

9  Graphic user interface (GUI)

GeoSparkSim provides a graphic user interface that allows users to interact with the 
system. The user can issue simulation requests and see visualized simulation results 
via this interface. Figure 7a is a GUI example.

Interface components GeoSparkSim user interface contains three main parts: 
input panel, map panel and report panel. The input panel on the right-top is the place 
where users can describe their personalized simulation request by checking several 
options and filling the parameters. The map panel on the left shows the viewport of 
a road network with a map background. Users can zoom in/out and pan on this panel 
to see different regions. The report panel on the right-bottom shows the status of 
current simulation job and reports the current ongoing task.

Issue a simulation request The user can enter the number of vehicles and simula-
tion period. He or she can also select VehicleRDD initialization approach on the 
input panel. Then the user is required to draw a rectangle on the map panel to spec-
ify the simulation region.

Visualize the simulation result Once the simulation is done, the user can opt to 
ask for visualized simulation results. The GUI will create a new graphical frame 
in order to render all road network elements and simulated vehicle locations every 
simulation time step. In each time step, the graphical painter will update and redraw 
the moving vehicles based on the current simulation step. Traffic signals will also be 
updated. The simulation panel is created by Java Swing which can run on any plat-
form. The GUI keeps listening to the user events from the mouse wheel and mouse 
motion. If the user zooms in or zooms out the simulation, the panel will repaint 
all the elements coordinate projection in the simulators panel. If the user drags and 
moves the center of the simulation, the panel will make corresponding coordinates 

(a) (b)

Fig. 7  GeoSparkSim graphic user interface
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projection changes. Figure 7b is a traffic visualization example using the road net-
work in Arizona State University.

10  Evaluation

10.1  Environment setting

Compared approaches (1) GeoSparkSim: the system proposed in this paper. (2) 
Sumo[4]: a popular single-machine microscopic traffic simulator (3) SMARTS[7]: a 
distributed microscopic traffic simulator using static z-curve partitioning.

Cluster All compared approaches are implemented with Apache Spark. We con-
duct the experiments on a cluster which has one master node and four worker nodes. 
Each machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz per core), 
100 GB memory, and 4 TB HDD. We also install Apache Hadoop 2.6 and Apache 
Spark 2.3.2. We assign 10 GB memory to the Spark driver program that runs on the 
master machine, which is quite enough to handle any necessary global computation. 
Several monitoring software, such as Spark history server and Ganglia, are used to 
measure the cluster status. Ganglia is a distributed monitoring system that can check 
current CPU, memory, and network utilization of the cluster.

Parameters We change the following parameters throughout the experiments 
(listed in Table 6, default values are in italics): (1) Number of vehicles: the number 
of vehicles that need to be simulated. (2) Time step: the time interval between two 
generated GPS locations. It is the simulation granularity. Time step has a significant 
influence on simulation time. For example, if the period is 10 min and 1 s per step, 
it requires 600 simulation iterations. If it is 0.8 s per step, 10 min need 750 steps. 
(3) The number of partitions: the number of partitions in all RDDs (4) Temporal 
partition size (min): the size of temporal partitions in GeoSparkSim. (5) Simulation 
period: the overall period that GeoSparkSim wants to simulate.

Default values The numbers underlined in Table  6 are the default values used 
in the experiment. By default, GeoSparkSim sets the temporary partition size to 2 
min. In other words, it will invoke the spatial partitioning function to repartition the 
VehicleRDD and road network after simulating every 2-min traffic. For instance, 
assume a simulation workload (time step = 1 s, temporal partition size = 2 min, 
simulation period = 8:00 to 8:15), GeoSparkSim will simulate the vehicle GPS loca-
tions from 8:00 to 8:15 at the granularity of 1 s. GeoSparkSim will repartition the 

Table 6  Parameters Parameter Range

Number of vehicles (thousand) 100, 200, 300
Time step (s) 1, 0.8, 0.6, 0.4, 0.2
Number of partitions 1000, 1500, 3000
Temporal partition size (min) 1, 2, 4, 8, 10
Simulation period (min) 10, 30, 60, 120
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vehicleRDD and road network 8 times (8:00, 8:02, ..., 8:14). Besides, GeoSparkSim 
uses the KDB-tree partitioning method from GeoSpark[19] in its spatial partitioning 
step. If the simulation period is less than the repartition period, GeoSparkSim will 
not invoke the repartition step.

Evaluation metrics We use the following metrics to measure the performance of 
each approach: (1) Execution time: it is the time of running a GeoSparkSim simula-
tion workload. (2) Data size: it is the size of generated traffic data.

Tested data We use the road network of the Phoenix metropolitan area in the 
experiment, comprising a total area of 250 thousand road junctions and 300 thou-
sand road segments.

10.2  The impact of the number of vehicles

In this experiment, we study the impact of different numbers of vehicles. We vary 
the number from 100 thousand to 300 thousand and measure the execution time and 
data size. The results are reported in Fig. 8. We also show the time taken by each 
layer of GeoSparkSim. During the simulation, GeoSparkSim partitions the Vehi-
cleRDD twice (temporal partition size is 5 min).

As shown in Fig. 8a, both data importing part and route planning part take almost 
constant time. This happens because we use the same road network for all experi-
ments. After loading the network, GeoSparkSim leverages GraphHopper to build a 
shortest path index on it and creates a thread pool to access the index in parallel. The 
thread pool significantly shortens the route planning time. On the other hand, both 
vehicle partitioning layer and local microscopic simulation cost more time on the 
larger number of vehicles. This makes sense because GeoSparkSim needs to spend 
more time on shuffling data across the machines and simulating traffic on each parti-
tion if there are more vehicles in the VehicleRDD. In addition, the local microscopic 
simulation on each VehicleRDD partition takes most of the simulation time. This 
is because the local simulation costs lots of time to check the safe distance buffer 
among different vehicles.

(b)(a)

Fig. 8  The impact of the number of vehicles
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As depicted in Fig. 8a, as we increase vehicles in the VehicleRDD, the traffic data 
generated by GeoSparkSim also increases. This makes sense because GeoSparkSim 
will have to provide more GPS locations at each simulation time step if there are 
more vehicles.

10.3  The impact of simulation periods

In this experiment, we further examine the impact of different simulation periods. 
We vary the simulation period from 10 to 120 min. One hundred thousand vehicles 
are simulated, the temporal partition size is 2 min, the number of partition is 1500 
and the time step is 1 s. We report the results in Fig. 9. Data importing time and 
route planning time are omitted in this figure because it is reported in Fig. 8a.

As shown in Fig.  9a, as the simulation period increases, GeoSparkSim spends 
more time on simulating the traffic which makes sense because the system has to 
calculate the vehicle movements for more time steps. The partitioning time is also 
longer for the more extended simulation period. This happens because GeoSpark-
Sim repartitions the VehicleRDD, 5, 15, 30, and 60 times for different periods.

As depicted in Fig. 9b, with a larger simulation period, GeoSparkSim will gener-
ate more traffic data. This matches the expectation because the system will produce 
GPS locations for more time steps. It is worth noting that, the simulation period can 
be very large because it will only increase the execution time linearly. GeoSparkSim 
will always partition the period to temporal partitions and run a simulation for them 
one by one.

10.4  The impact of time steps

In this experiment, we explore the impact of the different simulation time step. We 
vary the time step from 1 to 0.2 s. One hundred thousand vehicles are simulated, the 

(b)(a)

Fig. 9  The impact of simulation period
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temporal partition size is 2 min, the number of partition is 1500 and the simulation 
period is 10 min.

As described in Fig. 10, with larger time steps, GeoSparkSim will spend less time 
on local microscopic simulation on each RDD partition. This happens because, given a 
fixed simulation period, the system will generate fewer GPS locations if the time step is 
larger. And, in each partition, GeoSparkSim takes fewer iterations to simulate the vehi-
cle movements. Data importing time and route planning time are omitted in this figure 
because it is reported in Fig. 8a.

10.5  The impact of the number of spatial partitions

In this experiment, we study the impact of different numbers of spatial partitions. We 
use three different numbers of partitions, 1000, 1500, and 3000. 100 thousand vehi-
cles are simulated, the time step is 1 s, the repartition period is 1 min and the simula-
tion period is 10 min. We report the results in Fig. 11. In this figure, the time spent on 
partitioning is increasing when there are more partitions. This is reasonable because 
more partitions will incur more shuffling overhead. However, too few partition or too 
many partitions will both lead to high local simulation time. This makes sense because 
too many partitions will generate small spatial boundaries of partitions. This eventually 
leads to lots of duplicated vehicle routes and edges such that slows down the simula-
tion performance. On the other hand, too few spatial partitions may lead to unbalanced 
partitions.

Fig. 10  The impact of time steps
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10.6  The impact of temporal partition sizes

In this experiment, we analyze the impact of different temporal partition sizes. We 
vary the temporal partition sizes from 1 to 10 min, 100 thousand vehicles are simu-
lated, the time step is 1 s, the number of partition is 1500 and the simulation period 
is 10 min. Results are shown in Fig. 12.

As shown in Fig. 12, the partitioning time decreases when the temporal partition 
size increases because a smaller temporal partition size means less re-partitioning 

Fig. 11  The impact of spatial partitions

Fig. 12  The impact of temporal partition size
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steps. However, the local simulation shows the shortest execution time when the 
temporal partition size is 2. This makes sense since large temporal partition will lead 
to more vehicle route overlaps and small temporal partition will cause unnecessary 
data computation.

10.7  Sumo and GeoSparkSim

In this experiment, we compare the data preparation time and simulation time 
between GeoSparkSim and Sumo, a popular single-machine microscopic simulator, 
using one thousand vehicles. The simulation part includes simulation-aware parti-
tioning and local simulation. The simulation period is 1 min and the time step is 1 s. 
Sumo and GeoSparkSim adopt same driving models, IDM and MOBIL. In Fig. 13, 
GeoSparkSim has 10 times faster data preparation speed and more than 100 times 
faster simulation speed. This is reasonable because GeoSparkSim parallelizes both 
data preparation and simulation.

10.8  SMARTS and GeoSparkSim

In this experiment, we compare the simulation time and speedup factor between 
GeoSparkSim and SMARTS, a distributed microscopic traffic simulator. We simu-
late 100 thousand vehicles, and vary the simulation period from 10 to 120 min. The 
data preparation time including vehicle generation and road network is omitted since 
the difference between GeoSparkSim and SMARTS is similar to that between Geo-
SparkSim and Sumo.

(1)Speed up factor =
simulation period

time cost

Fig. 13  Sumo and GeoSparkSim
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Speedup factor is defined in Eq. (1)[7]. It is the result of dividing the requested 
simulation period by the actual execution time. For example, if the user requests 
20 min of simulation and the simulator takes 10 min to generate the traffic, the 
speedup factor is 2. SMARTS and GeoSparkSim use the same traffic models, IDM 
and MOBIL. The simulation output for SMARTS is a collection of vehicle simula-
tion GPS coordinate by time steps, while GeoSparkSim contains not only the GPS 
trajectories but also vehicle events in each step, such as acceleration and velocity. 
As depicted in Fig. 14a, GeoSparkSim is 1.2 times faster than SMARTS when the 
simulation period is 120 min. GeoSparkSim has a better performance on longer sim-
ulation periods because GeoSparkSim takes into account the dynamic spatial distri-
bution and tries to balance workload by periodically repartitioning the data while 
SMARTS only partitions the data once. Figure 14b also indicates that GeoSparkSim 
can speed up the simulation even when the request period is very long.

11  Conclusion

In this paper, we presented GeoSparkSim, a scalable traffic simulator which extends 
Apache Spark to generate large-scale road network traffic data with microscopic 
traffic models. The proposed system seamlessly integrates with a Spark-based spa-
tial data management system, GeoSpark, to deliver a holistic approach that allows 
data scientists to simulate, analyze and visualize large-scale traffic data. Moreover, 
GeoSparkSim equips VehicleRDD and parallelizes the simulation workload to a 
set of VehicleRDD transformations. The proposed system also employs a simula-
tion-aware vehicle partitioning method to partition the workload among different 
machines. The experimental analysis shows that GeoSparkSim can simulate the 
movements of 300 thousand vehicles over a very large road network (250 thou-
sand road junctions and 300 thousand road segments) and outperform the existing 
competitors.

(b)(a)

Fig. 14  SMARTS and GeoSparkSim
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