
Geospatial Visual Analytics Belongs to Database Systems: The
BABYLON Approach

Jia Yu
Arizona State University

699 S. Mill Avenue
Tempe, Arizona 85281

jiayu2@asu.edu

1 INTRODUCTION

GeoVisual analytics, abbr. GeoViz, is the science of analytical rea-
soning assisted byGeoVisualmap interfaces. For example, a GeoViz
heat map of the New York City taxi trips tells the taxi company
where the hot pick-up and drop-off locations are. GeoViz involves
the following twomemory and compute intensive phases: Phase I:
Spatial Data Preparation: In this phase, the system first loads the
designated spatial data from the database (e.g., Shape files, PostGIS,
HDFS). Based on the application, the system may then need to per-
form data processing operations (e.g., spatial range query, spatial
join query) on the loaded spatial data to return the set of spatial ob-
jects to be visualized. Phase II: Map Visualization: In this phase,
the system applies the map visualization effect, e.g., Heatmap, on
the spatial objects produced in the Phase I. The system first pix-
elizes the spatial objects, then aggregates overlapped pixels, and
finally renders an image for each geospatial map tile.

Classic single machine solutions suffer from the limited com-
putation resources and hence take tremendous time to generate
maps out of large-scale spatial data. Also, guaranteeing detailed
and accurate geospatial visualization (e.g., multiple zoom levels)
requires extremely high resolution maps. Therefore, data scientist
may use a large-scale data processing system like MapReduce and
Apache Spark for the data preparation phase [3] and a visualization
tool, e.g., Tableau, for the map visualization phase. The decoupled
GeoViz system architecture demands substantial overhead to con-
nect the data processing engine to the map visualization tool. To
remedy that, recent systems combine the data preparation andmap
visualization phases in the same cluster [1, 2, 4], e.g., HadoopViz +
SpatialHadoop. Unfortunately, such systems directly implement
the two phases sequentially. For instance, HadoopViz needs to
complete the data preparation phase before starting the map vi-
sualization phase. Hence, it loses the opportunity to co-optimize
the data preparation and map visualization to further scale up. For
a complex GeoViz workload that consists of many spatial queries
and visualization requests acting on big geospatial datasets, it may
significantly advance the system performance if we can merge or
re-organize some operators to produce a more efficient execution
plan. The paper presents Babylon1 a large-scale Geospatial Visual
analytics (GeoViz) system that performs the spatial data prepara-
tion and map visualization phases in the same distributed cluster.
Babylon has the following main contributions: (1) Babylon en-
capsulates the main steps of the geospatial map visualization pro-
cess, e.g., pixelize, spatially aggregate, and render, into a set ofmas-
sively parallelized GeoViz operators and the user can assemble any

1Babylon Github repository: https://github.com/DataSystemsLab/Babylon

Figure 1: Hourly updated choropleth map on tweets

customized styles. (2) Babylon proposes a GeoViz-aware spatial
partitioning operator that accommodates the need for visual ana-
lytics but also takes into account the load balance when processing
skewed geospatial data in parallel. (3) Babylon employs a set of
GeoViz query operators that extend classic spatial query operators
to perform spatial queries, e.g., spatial range and join, on hybrid in-
puts including spatial objects and pixels. (4) Babylon provides the
end users with a declarative GeoViz language to clearly describe
the ultimate visualization effect. Babylon optimizer co-optimizes
GeoViz query and viz operators side by side and selects the best
execution plan (in terms of total run time). To achieve that, the
optimizer calculates the spatial distribution of the input datasets,
analyzes the GeoViz workload information, and finally proposes a
GeoViz execution plan.

2 SYSTEM OVERVIEW

2.1 GeoViz-aware Spatial Partitioner

A good data partitioning method should ensure that each data par-
tition’s logical boundary covers roughly similar number of spa-
tial objects (aka., load-balance) in the space. Then the cluster can
maximize its parallelism because the data partition on each ma-
chine costs similar execution time. GeoViz-aware spatial parti-
tioner accommodates the need for visual analytics but also takes
into account the load balance when processing skewed geospatial
data. On one hand, it makes sure that each data partition contains
roughly similar number of pixels to avoid ”stragglers” (a machine



that takes much more inputs than others so that performs slowly).
On the other hand, the logical space partition boundary of each
data partition is derived from an image tile space partition of the
final image so that data partitions that belong to the same tile space
are able to be stitched together and produce the tile (see Figure 2).

2.2 GeoViz Viz and Query Operators

Babylon breaks the map visualization pipeline into a sequence of
viz operators and parallelizes each operator in the cluster.

Figure 2: Partition structure

The GeoViz viz operators
supported by Babylon

are: (1) Pixelize operator
takes as input the mas-
sive datasets from vari-
ous data sources and the
designated image quality
(in terms of pixel res-
olution). It then pix-
elizes each spatial object
(such as point, polygon
and line string) to pix-
els in parallel. (2) Ag-
gregate operator aggre-
gates overlapped pixels
produced by the pixelize
operator on each data partition. (3) Render operator assigns colors
to all pixels distributed in the cluster and generates a distributed
map image tile dataset. (4) Overlay operator takes as inputmultiple
distributed image tile datasets and overlays them one by one. In
addition, Babylon employs a set of GeoViz query operators that
extend classic spatial query operators to perform spatial queries,
e.g., spatial range and join, on hybrid inputs including spatial ob-
jects and pixels. During the execution time, GeoViz query opera-
tor calculates the spatial relation among pixels and spatial objects
and skips some resource-consuming steps in classic query opera-
tors which are redundant for the visualization purpose. Eventually,
these operators return qualified pixels for rendering. Encapsulat-
ing GeoViz viz and query operators offers flexibility to bothGeoViz
system architecture such as Babylon and geospatial visualization
experts. On one hand, Babylon can easily pick proper viz opera-
tors in conjunction with query operators to design new operator
execution plan at a lower execution time cost. On the other hand,
Babylon exposes these operators to visualization experts using ex-
tensible APIs.

2.3 Declarative GeoViz and Optimizer

Babylon provides the end users with a declarative GeoViz lan-
guage with Map Algebra support. The user can assemble his own
geospatial visual analytics workload using a set of Babylon re-
served SQL commands. Babylon optimizer compiles the declared
GeoViz SQL sentences and decides the best execution plan (in the
regard of total run time). Figure 1 uses a choroplethmap to plot US
tweets distribution per polygonal county boundaries and updates
tweets on an hourly basis. Non-optimized and optimized execu-
tion plans (I, II, respectively) are depicted in Figure 3. Basically,
Babylon optimizer first decomposes the analytics workload into

Figure 3: An optimized complex visual analytics workload

multiple operators and regenerating the execution plan following
the rules: (1)Merge repeated operators together Plan I contains
two time-consuming partitioning operators that lead to full cluster
data shuffle. Thus it is better to do only one GeoViz-aware parti-
tioning at the beginning for a known visual analytics workload.
(2) Reduce dataset scale in advance If the user demands a map
that has much less pixels than the input datasets, it is better to first
pixelize datasets and aggregate overlapped pixels to reduce data
scale. Thus Plan II shifts the position of pixelization. (3) Cache
frequently accessed datasets The polgyonal county boundary
dataset are accessed frequently when updating the map per hour.
Babylon caches the pixelized and partitioned dataset into memory
and makes it ready for instant use.

3 PRELIMINARY RESULTS

Figure 4: Babylon result

We conduct an experiment
on a four-node Apache Spark
cluster. Each machine has
a 12-core CPU, and 128 GB
memory. Three datasets are
used in this experiment: (1)
Postal Code Area (1.5 GB):
171K polygonal city bound-
aries. (2) Buildings (26
GB): 115M polygonal build-
ing boundaries. (3) New York
City Taxi Trip (200 GB): 1.3
billion trip pickup points. We
spatial-join Dataset(1) with
Dataset(2) and (3), respectively, and plot two Choropleth Maps
on the join results (similar to Figure 1). Figure 4 depicts that the
GeoViz workload that is optimized by Babylon optimizer runs
around 30-50% faster than the same workload without Babylon
optimizer.

REFERENCES
[1] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. 2016.

HadoopViz: A MapReduce framework for extensible visualization of big spatial
data. In ICDE. 601–612.

[2] Jianfeng Jia, Chen Li, Xi Zhang, Chen Li, Michael J. Carey, and Simon Su. 2016.
Towards interactive analytics and visualization on one billion tweets. In SIGSPA-
TIAL. 85:1–85:4.

[3] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient In-Memory Spatial Analytics. In SIGMOD. 1071–1085.

[4] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL. 70:1–70:4.

2


