
Hippo in Action: Scalable Indexing of a Billion New
York City Taxi Trips and Beyond

Jia Yu1 Raha Moraffah2 Mohamed Sarwat3
Arizona State University, 699 South Mill Ave., Tempe, AZ 85281

1jiayu2,2rmoraffa,3msarwat@asu.edu

Abstract

The paper demonstrates Hippo a lightweight database
indexing scheme that significantly reduces the storage
and maintenance overhead without compromising much
on the query execution performance. Hippo stores disk
page ranges instead of tuple pointers in the indexed table
to reduce the storage space occupied by the index. It
maintains simplified histograms that represent the data
distribution and adopts a page grouping technique that
groups contiguous pages into page ranges based on the
similarity of their index key attribute distributions. When
a query is issued, Hippo leverages the page ranges and
histogram-based page summaries to recognize those pages
such that their tuples are guaranteed not to satisfy the
query predicates and then inspects the remaining pages. We
demonstrate Hippo using a billion NYC taxi trip records.
Video: http://www.youtube.com/watch?v=wWaOK2-9k9A

I. INTRODUCTION

The volume of available data is increasing at staggering
rates. For instance, New York City Taxi and Limousine Com-
mission has recently released a 260 Gigabytes dataset of NYC
Yellow Cab and Green Taxi trips, abbr. NYC Taxi [1]. The
dataset contains detailed records of over 1.1 billion individual
taxi trips in the city from January 2009 through June 2015.
Each record includes pick-up and drop-off dates/times, pick-
up and drop-off precise location coordinates, trip distances,
itemized fares, payment method, and travel distance. To make
sense of such data, the first step is to digest the dataset in
a database systems, e.g., PostgreSQL, and then issue queries,
e.g., find all taxi trips to the Laguardia airport (Figure 3). To
speed up such queries, a user may build an index, e.g., B+-
Tree and R-tree, on frequently accessed attributes (e.g., Taxi
pick-up location). Although classic database indexes improve
the query response time, they face the following challenges:

Indexing Overhead: A database index usually yields 5%
to 15% additional storage overhead. Although the overhead
may not seem too high in small databases, it results in non-
ignorable dollar cost in big data scenarios. Moreover, the dollar
cost increases dramatically when the DBMS is deployed on
modern storage devices, e.g., SSD, because they are still more
than an order of magnitude expensive than Hard Disk Drives.
Also, initializing an index may be a time consuming process
especially when the index is created on a large table.

Maintenance Overhead: A DBMS must update the index
after inserting (deleting) tuples into (from) the underlying

This work is supported by the National Science Foundation Grant 1654861

Fig. 1: Initialization and search in Hippo (best viewed in color)

table. Maintaining a database index incurs high latency because
the DBMS has to locate and update those index entries affected
by the underlying table changes. For instance, maintaining a
B+-Tree searches the tree structure and perhaps performs a
set of tree nodes splitting or merging operations. That requires
plenty of disk I/O operations and hence encumbers the time
performance of the entire DBMS in big data scenarios.

In this paper, we demonstrate a novel database indexing
scheme, namely Hippo [2]. The proposed indexing scheme
is able to (1) process queries nearly as fast as the B-tree
or R-tree for medium selectivity queries, (2) occupies up to
two orders of magnitude less storage overhead than de-facto
database indexes, e.g.,, B+-tree and R-Tree, while achieving
comparable query execution performance., and (3) handle data
updates quickly to handle update intensive applications (e.g.,
new taxi trips are inserted into the database all the time). Hippo
achieves about three orders of magnitudes less maintenance
overhead compared to existing indexes supported by major
database vendors. We implemented a prototype of Hippo inside
the core engine of PostgreSQL 9.6.11. The demo attendee can
query/visualize the indexed NYC taxi data on the map and
also compare index performance of a variety of indexes, e.g.,

1Source code: https://github.com/DataSystemsLab/hippo-postgresql



B-Tree, R-Tree, and Hippo, using PostgreSQL.

II. SYSTEM OVERVIEW

Figure 1 depicts a running example that describes the index
initialization (left part of the figure) and search (right part of
the figure) processes. Hippo consists of n index entries such
that each entry consists of the following two components:

Summarized Page Range: Two integers that represent the
IDs of the first and last pages summarized by the index entry.
The DBMS can load particular pages into buffer according
to their IDs. Hippo summarizes more than one physically
contiguous pages to reduce the overall index size, e.g., Page 1
- 10, 11 - 25, 26 - 35 in Figure 1. The number of summarized
pages in each index entry varies. Hippo adopts a page grouping
technique that groups contiguous pages into page ranges based
on the similarity of their index attribute distributions, using the
partial histogram density.

Histogram-based Summary: A bitmap that represents
a subset of the complete load balanced histogram buckets
(maintained by the underlying DBMS), aka. partial histogram.
Each bucket, if exists, indicates that at least one of the tuples
of this bucket exists in the summarized pages. Each partial
histogram represents the spatial distribution of the data in
the summarized contiguous pages. Since each bucket of a
load balanced histogram roughly contains the same number
of tuples, each of them has the same probability to be hit by
a random tuple from the table. Hippo leverages this feature to
handle a variety of data distributions, e.g., uniform and skewed.
We can build a 2 dimension complete histogram or convert 2D
data to 1D using Hilbert Curve and create 1D histogram.

The main idea behind Hippo is as follows: (1) Each index
entry summarizes many pages and each only stores two page
IDs and a compressed bitmap, and (2) Each page of the parent
table is only summarized by one Hippo index entry. Since
Hippo relies on histograms already created and maintained by
almost every existing DBMS (e.g., PostgreSQL), the system
does not exhibit a major additional overhead to create the
index. Hippo also adopts a page grouping technique that groups
contiguous pages into page ranges based on the similarity of
their index key attribute distributions. When a query is issued
on the indexed database table, Hippo leverages the page ranges
and histogram-based page summaries to recognize those pages
for which the internal tuples are guaranteed not to satisfy
the query predicates and then inspects the remaining pages.
Thus Hippo achieves competitive performance on common
range queries without compromising the accuracy. For data
insertion and deletion, Hippo dispenses with the numerous
disk operations by rapidly locating the affected index entries.
Hippo also adaptively decides whether to adopt an eager or
lazy index maintenance strategy to mitigate the maintenance
overhead while ensuring future queries are answered correctly.

III. DEMONSTRATION SCENARIO

We demonstrate Hippo using the NYC taxi dataset (de-
scribed in Section I). First, we store the dataset as a table in
PostgreSQL and then create an index on the pick-up location
attributes (represented using Hilbert Curve). The following
SQL shows how we create the index using Hippo:
CREATE INDEX hippoidx ON NYCTAXI USING hippo(PickupLocation)

(a) Query (b) Update (c) Hybrid workload
Fig. 2: Index performance (2b and 2c in logarithmic scale)

Fig. 3: Query Taxi Trips and visualize the results on the Map

Our experiments on comparing indexing overhead have
shown that Hippo (780 MB, 0.8 hour) has at least 30 times
less storage overhead and 2.8 times less initialization time than
B+-Tree (25 GB and 2.2 hour). The size of Hippo can be
further reduced by tuning its parameter. We also compare these
two indexes with Block Range Index (BRIN, a sparse index
in PostgreSQL). Query response time, data update time, and
hybrid workloads (query/update) are depicted in Figure2a, 2b
and 2c. Figure 2a indicates that when the selectivity factor
is 0.1%-1%, Hippo costs similar query response time with
B+-Tree while queries on BRIN are two times slower than
that on Hippo. Figure 2b depicts that, on different data update
percentage, Hippo is at least one order of magnitude faster
than other two indexes. As shown in Figure 2c, on different
percentage of query operations in the entire query/update
hybrid workload, Hippo has at least 3 times higher throughput
than other indexes.

We developed a web application that visualizes the NYC
taxi trips based on their pick-up locations using Google Maps.
The demo attendee can interact with the map to visualize the
NYC trips within the designated query region (see Figure 3).
An example of the SQL query issued to PostgreSQL is:
SELECT * FROM NYCTAXI T
WHERE ST_Within(LaGuardiaAirportArea, T.PickupLocation)

The details, e.g., fare amount, pick-up time, of each trip
located within the query region will appear on the left pane.
The user can then change the query window to visualize
the taxi trips for which the pick-up/drop-off location is in a
different region of NYC.

REFERENCES

[1] New york city taxi and limousine commission. http://www.nyc.gov/html/
tlc/html/about/trip record data.shtml.

[2] J. Yu and M. Sarwat. Two birds, one stone: A fast, yet lightweight,
indexing scheme for modern database systems. Proceedings of the VLDB

Endowment, PVLDB, 10(4), 2016. To appear.


