
GeoSpark: A Cluster Computing Framework for
Processing Large-Scale Spatial Data

Jia Yu
School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

699 S. Mill Avenue, Tempe, AZ

jiayu2@asu.edu

Jinxuan Wu
School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

699 S. Mill Avenue, Tempe, AZ

jinxuanw@asu.edu

Mohamed Sarwat
School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

699 S. Mill Avenue, Tempe, AZ

msarwat@asu.edu

ABSTRACT
This paper introduces GeoSpark an in-memory cluster
computing framework for processing large-scale spatial data.
GeoSpark consists of three layers: Apache Spark Layer,
Spatial RDD Layer and Spatial Query Processing Layer.
Apache Spark Layer provides basic Spark functionalities
that include loading / storing data to disk as well as reg-
ular RDD operations. Spatial RDD Layer consists of three
novel Spatial Resilient Distributed Datasets (SRDDs) which
extend regular Apache Spark RDDs to support geometrical
and spatial objects. GeoSpark provides a geometrical oper-
ations library that accesses Spatial RDDs to perform basic
geometrical operations (e.g., Overlap, Intersect). System
users can leverage the newly defined SRDDs to effectively
develop spatial data processing programs in Spark. The
Spatial Query Processing Layer efficiently executes spatial
query processing algorithms (e.g., Spatial Range, Join, KNN
query) on SRDDs. GeoSpark also allows users to create a
spatial index (e.g., R-tree, Quad-tree) that boosts spatial
data processing performance in each SRDD partition. Pre-
liminary experiments show that GeoSpark achieves better
run time performance than its Hadoop-based counterparts
(e.g., SpatialHadoop).

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems—Dis-
tributed databases; H.2.8 [DATABASE MANAGE-
MENT]: Database Applications—Spatial databases and
GIS

Keywords
Cluster computing; Large-scale data; Spatial data

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’15 November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM ISBN 978-1-4503-3967-4/15/11 $15.00.

The volume of available spatial data increased tremen-
dously. Such data includes but not limited to: weather
maps, socioeconomic data, vegetation indices, and more.
Moreover, novel technology allows hundreds of millions of
users to use their mobile devices to access their healthcare
information and bank accounts, interact with friends, buy
stuff online, search interesting places to visit on-the-go, ask
for driving directions, and more. Making sense of such spa-
tial data will be beneficial for several applications that may
transform science and society. Challenges to building such
platform are as follows: Challenge I: System Scalability. The
underlying database system must be able to digest Petabytes
of spatial data, effectively stores it, and allows applications
to efficiently retrieve it when necessary. Challenge II: Inter-
active Performance. The underlying spatial data processing
system must figure out effective ways to process user’s re-
quest in a sub-second response time.

Apache Spark is an in-memory cluster computing system.
Spark provides a novel data abstraction called resilient dis-
tributed datasets (RDDs) [9] that are collections of objects
partitioned across a cluster of machines. Each RDD is built
using parallelized transformations (filter, join or groupBy)
that could be traced back to recover the RDD data. In
memory RDDs allow Spark to outperform existing models
(MapReduce). Unfortunately, Spark does not provide sup-
port for spatial data and operations. Hence, users need to
perform the tedious task of programming their own spatial
data processing jobs on top of Spark.

This paper introduces GeoSpark 1 an in-memory clus-
ter computing system for processing large-scale spatial data.
GeoSpark extends the core of Apache Spark to support
spatial data types, indexes, and operations. In other words,
the system extends the resilient distributed datasets (RDDs)
concept to support spatial data. The key contributions of
this paper are as follows: (1) GeoSpark as a full-fledged
cluster computing framework to load, process, and analyze
large-scale spatial data in Apache Spark. (2) A set of out-of-
the-box Spatial Resilient Distributed Dataset (SRDD) types
(e.g., Point RDD and Polygon RDD) that provide in house
support for geometrical and distance operations. SRDDS
provides an Application Programming Interface (API) for
Apache Spark programmers to easily develop their spatial
analysis programs. (3) Spatial data indexing strategies that
partition the input Spatial RDD using a grid structure and
assign grids to machines for parallel execution. GeoSpark

1GeoSpark website: http://geospark.datasyslab.org

Paige
Typewritten Text
http://dx.doi.org/10.1145/2820783.2820860

Figure 1: GeoSpark Overview

also adaptively decides whether a spatial index needs to be
created locally on a Spatial RDD partition to strike a bal-
ance between the run time performance and memory/cpu
utilization in the cluster. Experiments show thatGeoSpark
achieves better run time performance than its Hadoop-based
counterparts (e.g., SpatialHadoop).
The rest of this paper is organized as follows. Section 2

highlights the related work. GeoSpark architecture is
given in Section 3. Preliminary experiments that evaluate
GeoSpark are given in Section 4. Finally, Section 5 con-
cludes the paper.

2. BACKGROUND AND RELATED WORK
Spatial Database Systems. Spatial database opera-

tions are vital for spatial analysis and spatial data mining.
Spatial range queries inquire about certain spatial objects
exist in a certain area (e.g., Return all parks in Phoenix).
Spatial join queries are queries that combine two datasets
or more with a spatial predicate, such as distance relations
(e.g., find the parks that have rivers in Phoenix). Spatial
k-Nearest Neighbors queries find the k nearest objects to a
given spatial object (e.g., show the 10 nearby restaurants).
Spatial query processing algorithms usually make use of spa-
tial indexes to reduce the query latency. For instance, R-
Tree [3] provides an efficient data partitioning strategy to
efficiently index spatial data. Its key idea is that group
nearby objects and put them in the next higher level node
of the tree. Quad-Tree [8] is also a spatial index that recur-
sively divides a two-dimensional space into four quadrants.
Parallel and Distributed Spatial Data Processing.

As the development of distributed data processing system,
more and more people in geospatial area direct their atten-
tion to deal with massive geospatial data with distributed
frameworks. Hadoop-GIS [1] utilizes global partition in-
dexing and customizable on demand local spatial indexing
to achieve efficient query processing. SpatialHadoop [2], a
comprehensive extension to Hadoop, has native support for
spatial data by modifying the underlying code of Hadoop.
MD-HBase [6] extends HBase, a non-relational database

Figure 2: SRDD partitioning

runs on top of Hadoop, to support multidimensional indexes
which allows for efficient retrieval of points using range and
kNN queries. Parallel SECONDO [4] combines Hadoop with
SECONDO, a database which can handle non-standard data
types, like spatial data, usually not supported by standard
systems. Although these systems have well-developed func-
tions, all of them are implemented on Hadoop framework.
That means they cannot avoid the disadvantages of Hadoop,
especially a large number of reads and writes on disks.

3. GEOSPARK ARCHITECTURE
As depicted in Figure 1, GeoSpark consists of three main

layers: (1) Apache Spark Layer: that consists of regular
operations that are natively supported by Apache Spark.
These native functions are responsible for loading / saving
data from / to persistent storage (e.g., stored on local disk or
Hadoop file system HDFS). (2) Spatial Resilient Distributed
Dataset (SRDD) Layer (Section 3.1). (3) Spatial Query Pro-
cessing Layer (Section 3.2).

3.1 Spatial RDD (SRDD) Layer
This layer extends Spark with spatial RDDs (SRDDs)

that efficiently partition SRDD data elements across ma-
chines and introduces novel parallelized spatial transforma-
tions and actions (for SRDD) that provide a more intuitive
interface for users to write spatial data analytics programs.
The SRDD layer consists of three new RDDs: PointRDD,
RectangleRDD and PolygonRDD. One useful Geometrical
operations library is also provided for every spatial RDD.

Spatial Objects Support. GeoSpark supports various
spatial data input format (e.g., Comma Separated Value,
Tab Separated Value and Well-Known Text). Each type
of spatial objects is stored in a SRDD, PointRDD, Rect-
angleRDD or PolygonRDD. GeoSpark provides a set of
geometrical operations which is called Geometrical Opera-
tions Library. This library natively supports geometrical
operations. For example, Overlap(): Finds all of the inter-
nal objects which are intersected with others in geometry;
MinimumBoundingRectangle(): Finds the minimum bound-
ing rectangles for each object in a Spatial RDD or return
a large minimum bounding rectangle which contains all of
the internal objects in a Spatial RDD; Union(): Returns the
union polygon of all polygons in this RDD.

SRDD Partitioning. GeoSpark automatically parti-
tions all loaded Spatial RDDs by creating one global grid
file for data partitioning. The main idea for assigning each
element in a Spatial RDD to the same 2-Dimensional spatial
grid space is as follows: Firstly, split the spatial space into a

Figure 3: Query execution model

number of equal geographical size grid cells which compose
a global grid file. Then traverse each element in the SRDD
and assign this element to a grid cell if the element over-
laps with this grid cell. If one element intersects with two
or more grid cells, then duplicate this element and assign
different grid IDs to the copies of this element. Figure 2 de-
picts tweets in the U.S. at a particular moment, tweets and
states are assigned to respective grid cells.
SRDD Indexing. Spatial indexes like Quad-Tree and

R-Tree are provided in Spatial IndexRDDs which inherit
from Spatial RDDs. Users are able to initialize a Spatial In-
dexRDD. Moreover, GeoSpark adaptively decides whether
a local spatial index should be created for a certain Spa-
tial IndexRDD partition based on a tradeoff between the
indexing overhead (memory and time) on one-hand and the
query selectivity as well as the number of spatial objects on
the other hand.

3.2 Spatial Query Processing Layer
This layer supports spatial queries (e.g., Range query and

Join query) for large-scale spatial datasets. After geomet-
rical objects are stored and processed in the Spatial RDD
layer, user may invoke a spatial query provided in Spatial
Query Processing Layer. GeoSpark processes such query
and returns the final results to the user. Figure 3 gives the
general execution model followed by GeoSpark . This ex-
ecution model implements the algorithms proposed by [5]
and [10]. To accelerate a spatial query, GeoSpark lever-
ages the grid partitioned Spatial RDDs, spatial indexing, the
fast in-memory computation and DAG scheduler of Apache
Spark to parallelize the query execution.
Spatial Range Query. GeoSpark executes the spatial

range query algorithm following the execution model: Load
target dataset, partition data, create a spatial index on each
SRDD partition if necessary, broadcast the query window
to each SRDD partition, check the spatial predicate in each
partition, and remove spatial objects duplicates that existed
due to the data partitioning phase.
Spatial Join Query. GeoSpark executes the parallel

spatial join query following the execution model. GeoSpark
first partitions the data from the two input SRDDs as well
as creates local spatial indexes (if required) for the SRDD
which is being queried. Then it joins the two datasets by
their keys which are grid IDs. For the spatial objects (from
the two SRDDs) that have the same grid ID, GeoSpark cal-
culates their spatial relations. If two elements from two
SRDDS are overlapped, they are kept in the final results.
The algorithm continues to group the results for each rectan-
gle. The grouped results are in the following format: Rect-

angle, Point, Point, ... Finally, the algorithm removes the
duplicated points and returns the result to other operations
or saves the final result to disk.

Spatial KNN Query. To process a Spatial KNN query,
GeoSpark uses a heap based top-k algorithm[7], which con-
tains two phases: selection and merge. It takes a partitioned
SRDD, a point P and a number k as inputs. To calculate
the k nearest objects around point P , in the selection phase,
for each SRDD partition GeoSpark calculates the distances
between each object to the given point P , then maintains a
local heap by adding or removing elements based on the dis-
tances. This heap contains the nearest k objects around the
given point P . For IndexedSRDD, the system can utilize the
local indexes to reduce the query time. After the selection
phase, GeoSpark merges results from each partition, keeps
the nearest k elements that have the shortest distances to P
and outputs the result.

4. EXPERIMENTS
This section provides preliminary experimental eval-

uation that studies the run time performance of the
following large-scale spatial data processing systems:
(1) GeoSpark_NoIndex | QuadTree | RTree: GeoSpark
approach without spatial index, with spatial Quad-Tree
or R-Tree index. In these approaches, data is parti-
tioned according grids. Required spatial indexes are cre-
ated on each partition after data partitioned. (2) Spatial-
Hadoop_NoIndex | RTree: SpatialHadoop approach with-
out spatial index or with spatial R-Tree index.

Experimental Setup. Our cluster setting on Amazon
EC2 is as follows: (1) CPU per worker: 8 Intel Xeon Pro-
cessors operating at 2.5 GHz with Turbo up to 3.3 GHz.
(2) Memory per worker: 61 GB in total and 50 GB regis-
tered memory in Spark and Hadoop. (3) Storage per worker:
Amazon general purpose SSD. We deploy Ganglia, a scalable
distributed monitoring system for high performance com-
puting systems such as clusters, on our Amazon EC2 exper-
imental cluster.

Datasets. We use three real spatial datasets extracted
from TIGER files in our experiments: Zcta510 1.5 GB
dataset, Areawater 6.5 GB dataset and Edges 62 GB
dataset. They contain all the cities, all the lakes and all
the meaningful boundaries in the US in rectangle format
correspondingly. All of the datasets are preprocessed by
SpatialHadoop and are open to the public on its website [2].

4.1 Impact of Data Size
This section compares GeoSpark on TIGER Areawater

6.5 GB dataset with TIGER Edges 62 GB dataset as well as
SpatialHadoop. They are tested on 16 nodes cluster. Their
performance are shown in Figure 5. As depicted in Fig-
ure 5, GeoSpark and SpatialHadoop cost more run time
on the large dataset than that on the small one. However,
GeoSpark achieves much better run time performance than
SpatialHadoop in both datasets. This superiority is more
obvious on the small dataset. The reason is that GeoSpark
can cache more percentage of the intermediate data in mem-
ory on the small scale input than that on the large one. That
accelerates the processing speed.

4.2 Performance of Spatial Iterative Analysis
Spatial co-location pattern recognition is defined as two

or more species are ofter located in a neighborhood rela-

1 double th r e sho ld = THRESHOLD;
double baseDistance = 1 . 0 ;

3 double In t e rva lD i s t anc e = 0 . 5 ;
i n t counter=0;

5 double CoLocat i onCoe f f i c i en t =0.0;
// I n i t i a l i z e IndexedPointRDD

7 IndexedPointRDD ta rg e t =
new IndexedPointRDD (SparkContext ,
DatasetLocat ion) ;

9 // I t e r a t i v e Adjacency Matrix Ca l cu la t i on
whi le (CoLocat ionCoe f f i c i ent>th r e sho ld) {

11 PairRDD glbAdjMat =
ta rg e t . Spat ia lJo inQuery (target , WITHIN,

13 baseDistance + counter ∗ I n t e rva lD i s t anc e) ;
CoLocat i onCoe f f i c i en t=

15 CalculateCoLocat ion (glbAdjMat) ;
counter++;

17 }
re turn baseDistance + (counter −1) ∗

I n t e rva lD i s t anc e ;

Figure 4: Adjacency Matrix (Java code) in GeoSpark

Figure 5: Run Time Performance for Spatial Join Over Dif-
ferent Spatial Datasets

tionship. It usually executes multiple times to form a 2-
dimension curve for observation. This calculation needs the
adjacent matrix between two type of objects which is the
result of a join query. Sample code for finding adjacent ma-
trix is given in Figure 4. We iteratively query GeoSpark
SRDDs two times with different distances which can be
defined as neighborhood relationships in adjacent matrix.
Since SpatialHadoop doesn’t natively support iterative jobs,
we have to run SpatialHadoop_RTree two times for a rea-
sonable comparison. We use the first point column in both
of TIGER Zcta 1.5 GB dataset and TIGER Edges 62 GB
dataset and join them.
As shown in Figure 6, GeoSpark outperforms Spatial-

Hadoop in spatial co-location. And their performances are
also improved when we increase the number of machines per
cluster. GeoSpark only costs the quarter time of Spatial-
Hadoop. The main reason behind is that GeoSpark caches
these datasets in memory with SRDDs automatically after
loads from the storage system. The iterative jobs like spa-
tial co-location can invoke these SRDDs multiple times from
memory without any data transformation and data load-
ing. SpatialHadoop has to read and transform the original
datasets again and again.

5. CONCLUSION AND FUTURE WORK
This paper introduced GeoSpark an in-memory cluster

computing framework for processing large-scale spatial data.
GeoSpark provides an API for Apache Spark program-
mers to easily develop spatial analysis applications. More-
over, GeoSpark provides native support for spatial data

Figure 6: Run Time Performance for Spatial Co-location
Pattern Recognition

indexing and query processing algorithms in Apache Spark
to efficiently analyze spatial data at scale. Experiments
on data sizes and spatial analysis show that GeoSpark
achieves better run time performance than its MapReduce-
based counterparts (e.g., SpatialHadoop). The proposed
ideas are packaged into an open source software artifact.
In the future, we envision GeoSpark to be used by Earth
and Space Scientists, Geographers, Politicians, Commercial
Institutions to analyze spatial data at scale. We also expect
the scientific community will contribute to GeoSpark and
add new functionalities on top-of it that serve novel spatial
data analysis applications.

6. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and

J. H. Saltz. Hadoop-GIS: A High Performance Spatial
Data Warehousing System over MapReduce. PVLDB,
6(11):1009–1020, 2013.

[2] A. Eldawy and M. F. Mokbel. A demonstration of
spatialhadoop: An efficient mapreduce framework for
spatial data. PVLDB, 6(12):1230–1233, 2013.

[3] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In SIGMOD, 1984.

[4] J. Lu and R. H. Guting. Parallel Secondo: Boosting
Database Engines with Hadoop. In ICPADS, pages
738 –743, 2012.

[5] G. Luo, J. F. Naughton, and C. J. Ellmann. A
non-blocking parallel spatial join algorithm. In Data
Engineering, 2002. Proceedings. 18th International
Conference on, pages 697–705. IEEE, 2002.

[6] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi.
MD-Hbase: A Scalable Multi-dimensional Data
Infrastructure for Location Aware Services. In MDM,
pages 7–16, 2011.

[7] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In ACM SIGMOD record,
volume 24, pages 71–79. ACM, 1995.

[8] H. Samet. The quadtree and related hierarchical data
structures. ACM Computing Surveys (CSUR),
16(2):187–260, 1984.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In
NSDI, pages 15–28, 2012.

[10] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning
for parallel spatial join processing. Geoinformatica,
2(2):175–204, 1998.

