
1 23

GeoInformatica
An International Journal on Advances
of Computer Science for Geographic
Information Systems

ISSN 1384-6175

Geoinformatica
DOI 10.1007/s10707-018-0330-9

Spatial data management in apache spark:
the GeoSpark perspective and beyond

Jia Yu, Zongsi Zhang & Mohamed
Sarwat

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Geoinformatica
https://doi.org/10.1007/s10707-018-0330-9

Spatial data management in apache spark: the GeoSpark
perspective and beyond

Jia Yu1 ·Zongsi Zhang1 ·Mohamed Sarwat1

Received: 19 July 2017 / Revised: 16 July 2018 / Accepted: 27 September 2018 /

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The paper presents the details of designing and developing GEOSPARK, which extends the
core engine of Apache Spark and SparkSQL to support spatial data types, indexes, and
geometrical operations at scale. The paper also gives a detailed analysis of the technical
challenges and opportunities of extending Apache Spark to support state-of-the-art spatial
data partitioning techniques: uniform grid, R-tree, Quad-Tree, and KDB-Tree. The paper
also shows how building local spatial indexes, e.g., R-Tree or Quad-Tree, on each Spark data
partition can speed up the local computation and hence decrease the overall runtime of the
spatial analytics program. Furthermore, the paper introduces a comprehensive experiment
analysis that surveys and experimentally evaluates the performance of running de-facto
spatial operations like spatial range, spatial K-Nearest Neighbors (KNN), and spatial join
queries in the Apache Spark ecosystem. Extensive experiments on real spatial datasets show
that GEOSPARK achieves up to two orders of magnitude faster run time performance than
existing Hadoop-based systems and up to an order of magnitude faster performance than
Spark-based systems.

Keywords Spatial databases · Distributed computing · Big geospatial data

1 Introduction

The volume of available spatial data has increased tremendously. Such data includes but
is not limited to: weather maps, socioeconomic data, vegetation indices, geo-tagged social
media, and more. Furthermore, several cities are beginning to leverage the power of sensors

� Jia Yu
jiayu2@asu.edu

Zongsi Zhang
zzhan236@asu.edu

Mohamed Sarwat
msarwat@asu.edu

1 Arizona State University, 699 S. Mill Avenue, Tempe, AZ, USA

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-018-0330-9&domain=pdf
http://orcid.org/0000-0003-1340-6475
mailto: jiayu2@asu.edu
mailto: zzhan236@asu.edu
mailto: msarwat@asu.edu

Geoinformatica

to monitor the urban environment. For instance, the city of Chicago started installing sensors
across its road intersections to monitor the environment, air quality, and traffic. Making
sense of such spatial data will be beneficial for several applications that may transform
science and society – For example: (1) Socio-Economic Analysis: that includes climate
change analysis [1], study of deforestation [2], population migration [3], and variation in sea
levels [4], (2) Urban Planning: assisting government in city/regional planning, road network
design, and transportation / traffic engineering, (3) Commerce and Advertisement [5]: e.g.,
point-of-interest (POI) recommendation services. These applications need a powerful data
management platform to handle spatial data.

Existing spatial database systems (DBMSs) [6] extend relational DBMSs with new
data types, operators, and index structures to handle spatial operations based on the Open
Geospatial Consortium standards [7]. Even though such systems sort of provide full sup-
port for spatial data, they suffer from a scalability issue. That happens because the massive
scale of available spatial data hinders making sense of it when using traditional spatial query
processing techniques. Recent works (e.g., [8, 9]) extend the Hadoop ecosystem to perform
spatial analytics at scale. Although the Hadoop-based approach achieves high scalability, it
still exhibits slow run time performance and the user will not tolerate such delays.

Apache Spark, on the other hand, provides a novel data abstraction called Resilient Dis-
tributed Datasets (RDDs) [10] that are collections of objects partitioned across a cluster of
machines. Each RDD is built using parallelized transformations (filter, join or groupBy) that
could be traced back to recover the RDD data. In memory RDDs allow Spark to outperform
existing models (MapReduce). Unfortunately, the native Spark ecosystem does not provide
support for spatial data and operations. Hence, Spark users need to perform the tedious task
of programming their own spatial data processing jobs on top of Spark.

In this paper, we present the details of designing and developing GEOSPARK 1,
which extends the core engine of Apache Spark and SparkSQL to support spatial data
types, indexes, and geometrical operations at scale. In other words, the system extends
the Resilient Distributed Datasets (RDDs) concept to support spatial data. It also intro-
duces Spatial SQL interface that follows SQL/MM-Part 3 standard [11]. Moreover, the
GEOSPARK optimizer can produce optimized spatial query plans and run spatial queries
(e.g., range, knn and join query) on large-scale spatial datasets. In addition, the map visu-
alization function of GEOSPARK creates high resolution maps in parallel. In summary, the
key contributions of this paper are as follows:

• The design and development of GEOSPARK, an open-source full-fledged cluster com-
puting framework to load, process, and analyze large-scale spatial data in Apache
Spark. GEOSPARK is equipped with an out-of-the-box Spatial Resilient Distributed
Dataset (SRDD), which provides in-house support for geometrical and distance oper-
ations necessary for processing geospatial data. The spatial RDD provides an Appli-
cation Programming Interface (API) for Apache Spark programmers to easily develop
their spatial analysis programs using operational (e.g., Java and Scala) and declarative
(i.e., SQL) languages.

A detailed analysis of the technical challenges and opportunities of extending the
core Apache Spark engine and SparkSQL to support state-of-the-art spatial data parti-
tioning techniques: uniform grid, R-tree, Quad-Tree, and KDB-Tree. Each partitioning
technique repartitions data based upon the spatial proximity among spatial objects to
achieve load balancing in the Spark cluster. The paper also shows how building local

1source code: https://github.com/DataSystemsLab/GeoSpark

Author's personal copy

https://github.com/DataSystemsLab/GeoSpark

Geoinformatica

spatial indexes, e.g., R-Tree or Quad-Tree, on each Spark data partition can speed up
the local computation and hence decrease the overall runtime of the spatial analytics
program. The GEOSPARK optimizer adaptively selects a proper join algorithm to strike
a balance between the run time performance and memory/cpu utilization in the cluster.

A comprehensive experimental analysis that surveys and experimentally evaluates
the performance of running de-facto spatial operations like spatial range, spatial K-
Nearest Neighbors (KNN), and spatial join queries in the Apache Spark ecosystem.
The experiments also compare the performance of GEOSPARK to the state-of-the-art
Spark-based and Hadoop-based spatial systems. The experiments show that GEOSPARK

achieves up to two orders of magnitudes better run time performance than the existing
Hadoop-based system and up to an order of magnitude faster performance than Spark-
based systems in executing spatial analysis jobs.

The rest of this paper is organized as follows. GEOSPARK architecture is described in
Section 3. Section 4 presents the Spatial Resilient Distributed Datasets (SRDDs) and
Section 5 explains how to efficiently process spatial queries on SRDDs. Query optimiza-
tion is discussed in Section 5.4. Section 6 provides three spatial applications to depict how
the users leverage GEOSPARK in practice. Section 7 experimentally evaluates GEOSPARK

system architecture. Section 2 highlights the related work. Finally, Section 8 concludes the
paper.

2 Background and related work

In this section, we summarize the background, related work and existing systems that sup-
port spatial data processing operations. To be precise, we study the systems’ source code
and research papers (if exist).

2.1 Spatial database operations

Spatial database operations are deemed vital for spatial analysis and spatial data mining.
Users can combine query operations to assemble a complex spatial data mining application.

Spatial Range query A spatial range query [12] returns all spatial objects that lie within
a geographical region. For example, a range query may find all parks in the Phoenix
metropolitan area or return all restaurants within one mile of the user’s current location.
In terms of the format, a spatial range query takes a set of points or polygons and a query
window as input and returns all the points / polygons which lie in the query area.

Spatial join Spatial join queries [13] are queries that combine two datasets or more with
a spatial predicate, such as distance relations. There are also some real scenarios in life:
tell me all the parks which have rivers in Phoenix and tell me all of the gas stations which
have grocery stores within 500 feet. Spatial join query needs one set of points, rectangles or
polygons (Set A) and one set of query windows (Set B) as inputs and returns all points and
polygons that lie in each one of the query window set.

Spatial K nearest neighbors (KNN) query Spatial KNN query takes a query center point, a
spatial object set as inputs and finds the K nearest neighbors around the center points. For
instance, a KNN query finds the 10 nearest restaurants around the user.

Author's personal copy

Geoinformatica

Spatial indexing Spatial query processing algorithms usually make use of spatial indexes
to reduce the query latency. For instance, R-Tree [14] provides an efficient data partitioning
strategy to efficiently index spatial data. The key idea is to group nearby objects and put
them in the next higher level node of the tree. R-Tree is a balanced search tree and obtains
better search speed and less storage utilization. Quad-Tree [15] recursively divides a two-
dimensional space into four quadrants.

2.2 Spatial data processing in the Hadoop ecosystem

There exist systems that extend state-of-the-art Hadoop to support massive-scale geospa-
tial data processing. A detailed comparison of the existing Hadoop-based systems is given
in Table 1. Although these systems have well-developed functions, all of them are imple-
mented on top of the Hadoop MapReduce framework, which suffers from a large number
of reads and writes on disk.

SpatialHadoop [9] provides native support for spatial data in Hadoop. It supports
various geometry types, including polygon, point, line string, multi-point and so on,
and multiple spatial partitioning techniques [16] including uniform grids, R-Tree, Quad-
Tree, KD-Tree, Hilbert curves and so on. Furthermore, SpatialHadoop provides spatial
indexes and spatial data visualization [17]. The SQL extension of SpatialHadoop, namely
Pigeon [18], allows users to run Spatial SQL queries following the standard SQL/MM-Part
3 [11] but does not provide a comprehensive spatial query optimization strategy.

Parallel-Secondo [19] integrates Hadoop with SECONDO, a database that can han-
dle non-standard data types, like spatial data, usually not supported by standard systems.
It employs Hadoop as the distributed task manager and performs operations on a multi-
node spatial DBMS. It supports the common spatial indexes and spatial queries except
KNN . However, it only supports uniform spatial data partitioning techniques, which cannot
handle the spatial data skewness problem. In addition, the visualization function in Parallel-
Secondo needs to collect the data to the master local machine for plotting, which does not
scale up to large datasets.

HadoopGIS [8] utilizes SATO spatial partitioning [20] (similar to KD-Tree) and local
spatial indexing to achieve efficient query processing. Hadoop-GIS can support declara-
tive spatial queries with an integrated architecture with HIVE [21]. However, HadoopGIS
doesn’t offer standard Spatial SQL [11] as well as spatial query optimization. In addition,
it lacks the support of complex geometry types including convex/concave polygons, line
string, multi-point, multi-polygon and so on. HadoopGIS visualizer can plot images on the
master local machine.

2.3 Apache spark and spark-based spatial data processing systems

Apache Spark [10] is an in-memory cluster computing system. Spark provides a
novel data abstraction called resilient distributed datasets (RDDs) that are collections
of objects partitioned across a cluster of machines. Each RDD is built using paral-
lelized transformations (filter, join or groupBy) that could be traced back to recover
the RDD data. For fault tolerance, Spark rebuilds lost data on failure using lineage:
each RDD remembers how it was built from other datasets (through transformations) to
recover itself. The Directed Acyclic Graph in Spark consists of a set of RDDs (points)
and directed Transformations (edges). There are two transformations can be applied to
RDDs, narrow transformation and wide transformation. The relation between the two

Author's personal copy

Geoinformatica

Ta
bl
e
1

C
om

pa
re

re
la
te
d
sy
st
em

s
w
ith

G
E
O
S
PA

R
K

Fe
at
ur
e
na
m
e

G
eo
Sp

ar
k

Si
m
ba

M
ag
el
la
n

Sp
at
ia
lS

pa
rk

G
eo
M
es
a

Sp
at
ia
lH

ad
oo
p

Pa
ra
lle
lS

ec
on
do

H
ad
oo
p
G
IS

R
D
D
A
PI

3
7

7
3

3
7

7
7

D
at
aF

ra
m
e
A
PI

3
3

3
7

3
7

7
7

Sp
at
ia
lS

Q
L
[1
1,

28
]

3
7

7
7

3
3

7
7

Q
ue
ry

op
tim

iz
at
io
n

3
3

3
7

3
7

3
7

C
om

pl
ex

ge
om

et
ri
ca
lo

pe
ra
tio

ns
3

7
7

7
3

3
7

7

Sp
at
ia
li
nd
ex
in
g

R
-T
re
e
Q
ua
d-
T
re
e

R
-T
re
e
Q
ua
d-
T
re
e

7
R
-T
re
e

G
ri
d
fi
le

R
-T
re
e
Q
ua
d-
T
re
e

R
-T
re
e

R
-t
re
e

Sp
at
ia
lp

ar
tit
io
ni
ng

M
ul
tip

le
M
ul
tip

le
Z
-C
ur
ve

R
-T
re
e

R
-T
re
e

M
ul
tip

le
U
ni
fo
rm

SA
T
O

R
an
ge

/D
is
ta
nc
e
qu
er
y

3
3

3
3

3
3

3
3

K
N
N
qu
er
y

3
3

7
7

7
3

7
3

R
an
ge

/D
is
ta
nc
e
Jo
in

3
3

3
3

3
3

3
3

Author's personal copy

Geoinformatica

RDDs linked by the transformations are called narrow dependency and wide dependency
respectively:

– Narrow dependency does not require the data in the former RDD (or RDDs) to be
shuffled across partitions for generating the later RDD.

– Wide dependency requires the data in the former RDDs to be shuffled across parti-
tions to generate the new RDD. For example, Reduce, GroupByKey, and OuterJoin.
Basically, wide dependency results in stage boundaries and starts a new stage.

SparkSQL [22] is an independent Spark module for structured data processing. It
provides a higher-level abstraction called DataFrame over Spark RDD. A DataFrame is
structured to the format of a table with column information. SparkSQL optimizer leverages
the structure information to perform query optimization. SparkSQL supports two kinds of
APIs: (1) DataFrame API manipulates DataFrame using Scala and Java APIs; (2) SQL API
manipulates DataFrame using SQL statements directly. Unfortunately, Spark and SparkSQL
do not provide native support for spatial data and spatial operations. Hence, users need to
perform the tedious task of programming their own spatial data exploration jobs on top of
Spark.

Limitations of Spark-based systems We have studied four popular Spark-based sys-
tems including their research papers and source code: Simba [23], Magellan [24], Spa-
tialSpark [25] and GeoMesa [26]. Before diving into the details of each system, we want to
summarize their common limitations (see Table 1):

– Simple shapes only: Simba only supports simple point objects for KNN and join. Mag-
ellan can read polygons but can only process spatial queries on the Minimum Bounding
Rectangle (MBR) of the input polygons. SpatialSpark only works with point and poly-
gon. Spatial objects may contain many different shapes (see Section 4.1) and even
a single dataset may contain heterogeneous geometrical shapes. Calculating complex
shapes is time-consuming but indeed necessary for real life applications.

– Approximate query processing algorithms: Simba does not use the Filter and Refine
model [14, 27] (see Section 4.4), which cannot guarantee the query accuracy for com-
plex shapes. The Filter-Refine model is a must in order to guarantee R-Tree/Quad-Tree
query accuracy although it takes extra time. Magellan only uses MBR in spatial queries
instead of using the real shapes. Simba and GeoMesa do not remove duplicated objects
introduced by spatial partitioning (i.e., polygon and line string, see Section 4.3) and
directly returns inaccurate query results.

– RDD only or DataFrame only: Simba and Magellan only provide DataFrame API.
However, the Java / Scala RDD API allows users to achieve granular control of their
own application. For complex spatial data analytics algorithm such as spatial co-
location pattern mining (see Section 6), Simba and Magellan users have to write lots of
additional code to convert the data from the DataFrame to the RDD form. That leads to
additional execution time as well as coding effort. On the other hand, SpatialSpark only
provides RDD API and does not provide support for spatial SQL. The lack of a SQL /
declarative interface makes it difficult for the system to automatically optimize spatial
queries.

– No standard Spatial SQL [11]: Simba’s SQL interface doesn’t follow either OpenGIS
Simple Feature Access [28] or SQL/MM-Part 3 [11], the two de-facto Spatial SQL stan-
dards. Magellan only allows the user to issue queries via its basic SparkSQL DataFrame
API and does not allow users to directly run spatial queries in a SQL statement.

Author's personal copy

Geoinformatica

Simba [23] extends SparkSQL to support spatial data processing over the DataFrame
API. It supports several spatial queries including range query, distance join query, KNN and
KNN join query. Simba builds local R-Tree indexes on each DataFrame partition and uses
R-Tree grids to perform the spatial partitioning. It also optimizes spatial queries by: (1) only
using indexes for highly selective queries. (2) selecting different join algorithms based on
data size.

Magellan [24] is a popular industry project that received over 300 stars on GitHub. It
extends SparkSQL to support spatial range query and join query on DataFrames. It allows
the user to build a “z-curve index” on spatial objects. Magallan’s z-curve index is actually a
z-curve spatial partitioning method, which exhibits slow spatial join performance [16].

SpatialSpark [25] builds on top of Spark RDD to provide range query and spatial join
query. It can leverage R-Tree index and R-Tree partitioning to speed up queries.

GeoMesa [26] is an open-source spatial index extension built on top of distributed data
storage systems. It provides a module called GeoMesaSpark to allow Spark to read the pre-
processed and pre-indexed data from Accumulo [29] data store. GeoMesa also provides
RDD API, DataFrame API and Spatial SQL API so that the user can run spatial queries on
Apache Spark. GeoMesa must be running on top of ZooKeeper [30] with 3 master instances.
GeoMesa supports range query and join query. In particular, it can use R-Tree spatial parti-
tioning technique to decrease the computation overhead. However, it uses a grid file as the
local index per DataFrame partition. Grid file is a simple 2D index but cannot well handle
spatial data skewness in contrast to R-Tree or Quad-Tree index. Most importantly, GeoMesa
does not remove duplicates introduced by partitioning the data and hence cannot guarantee
join query accuracy. In addition, GeoMesa does not support parallel map rendering. Its user
has to collect the big dataset to a single machine then visualize it as a low resolution map
image.

3 System overview

Figure 1 gives an overview of GEOSPARK. Users can interact with the system using either
a Spatial SQL API or a Scala/Java RDD API. The Scala/Java RDD API allows the user
to use an operational programming language to write her custom made spatial analytics
application. The user can create a Spatial RDD, call the geometrical library and run spa-
tial operations on the created RDDs. The Spatial SQL API follows the SQL/MM Part 3
Standard [11]. Specifically, three types of Spatial SQL interfaces are supported: (1) Con-
structors: initialize a Spatial RDD. (2) Geometrical functions: that represent geometrical
operations on a given Spatial RDD (3) Predicates: issue a spatial query and return data that
satisfies the given predicate such as Contains, Intersects and Within.

The Spatial Resilient Distributed Dataset (SRDD) layer extends Spark with Spatial
RDDs (SRDDs) that efficiently partition spatial data elements across the Apache Spark clus-
ter. This layer also introduces parallelized spatial transformations and actions (for SRDD)
that provide a more intuitive interface for programmers to write spatial data analytics pro-
grams. A Spatial RDD can accommodate heterogeneous spatial objects which are very
common in a GIS area. Currently, GEOSPARK allows up to seven types of spatial objects to
co-exist in the same Spatial RDD. The system also provides a comprehensive geometrical
operations library on-top of the Spatial RDD.

The spatial query processing layer allows programmers to execute spatial query oper-
ators over loaded Spatial RDDs. Such a layer provides an efficient implementation of the
most-widely used spatial query operators, e.g., range filter, distance filter, spatial k-nearest

Author's personal copy

Geoinformatica

Fig. 1 GEOSPARK Overview

neighbors, range join and distance join. Given a Spatial SQL statement, the optimizer takes
into account the execution time cost and interleaves different queries to produce a good
query execution plan. It mainly offers two types of optimizations: (1) cost-based join query
optimization: pick the faster spatial join algorithm based on the size of input Spatial RDDs
(2) predicate pushdown: detect the predicates which filter the data and push them down to
the beginning of the entire plan in order to reduce data size.

4 Spatial RDD (SRDD) layer

GEOSPARK Spatial RDDs are in-memory distributed datasets that intuitively extend tradi-
tional RDDs to represent spatial objects in Apache Spark. A Spatial RDD consists of many
partitions and each partition contains thousands of spatial objects. Large-scale spatial data
cannot be easily stored in Spark’s native RDD like plain objects because of the following
challenges:

Heterogeneous data sources Different from generic datasets, spatial data is stored in a
variety of special file formats that can be easily exchanged among GIS libraries. These for-
mats include CSV, GeoJSON [31], WKT [32], NetCDF/HDF [33] and ESRI Shapefile [34].
Spark does not natively understand the content of these files and straightforward loading of
such data formats into Spark may lead to inefficient processing of such data.

Complex geometrical shapes There are many different types of spatial objects each of
which may possess very complex shapes such as concave/convex polygons and multiple
sub-shapes. In addition, even a single dataset may contain multiple different objects such
as Polygon, Multi-Polygon, and GeometryCollection. These objects cannot be efficiently

Author's personal copy

Geoinformatica

partitioned across machines, serialized in memory, and processed by spatial query operators.
It requires too much effort to handle such spatial objects, let alone optimize the performance
in terms of run time cost and memory utilization.

Spatial partitioning The default data partitioner in Spark does not preserve the spatial
proximity of spatial objects, which is crucial to the efficient processing of spatial data.
Nearby spatial objects are better stored in the same RDD partition so that the issued queries
only access a reduced set of RDD partitions instead of all partitions.

Spatial index support Spark does not support any spatial indexes such as Quad-Tree and
R-Tree. In addition, maintaining a regular tree-like spatial index yields additional 15% stor-
age overhead [35, 36]. Therefore, it is not possible to simply build a global spatial index for
all spatial objects of an RDD in the master machine memory.

In order to tackle the challenges mentioned above, GEOSPARK offers an integrated solu-
tion, Spatial RDD, that allows for efficient loading, partitioning, and indexing of complex
spatial data. The rest of this section highlights the details of the Spatial RDD layer and
explains how GEOSPARK exploits Apache Spark core concepts for accommodating spa-
tial objects. For the sake of understanding the concepts, we use the New York City Taxi
Trip dataset [37] (TaxiTripTable) as a running example in all sections. The dataset con-
tains detailed records of over 1.1 billion individual taxi trips in the city from January
2009 through December 2016. Each record includes pick-up and drop-off dates/times, pick-
up and drop-off precise location coordinates, trip distances, itemized fares, and payment
methods.

4.1 SRDD spatial objects support

As mentioned before, Spatial RDD supports various input formats (e.g., CSV, WKT, GeoJ-
SON, NetCDF/HDF, and Shapefile), which cover most application scenarios. Line delimited
file formats (CSV, WKT and GeoJSON) that are compatible with Spark can be created
through the GEOSPARK Spatial SQL interface. Binary file formats (NetCDF/HDF and
Shapefile) need to be handled by GEOSPARK customized Spark input format parser which
detects the position of each spatial object.

Since spatial objects have many different types [31–34], GEOSPARK uses a flexible
implementation to accommodate heterogeneous spatial objects. Currently, GEOSPARK sup-
ports seven types of spatial objects, Point, Multi-Point, Polygon, Multi-Polygon, LineString,
Multi-LineString, GeometryCollection, and Circle. This means the spatial objects in a Spa-
tial RDD can either belong to the same geometry type or be in a mixture of many different
geometry types.

GEOSPARK users only need to declare the correct input format followed by their spatial
data without any concern for the underlying processing procedure. Complex data transfor-
mation, partitioning, indexing, in-memory storing are taken care of by GEOSPARK and do
not bother users. A SQL and Scala example of constructing a Spatial RDD from WKT
strings is given below.

/* Spatial SQL API*/

SELECT ST_GeomFromWKT(TaxiTripRawTable.pickuppointString)

FROM TaxiTripRawTable

/* Scala/Java RDD API */

Author's personal copy

Geoinformatica

var TaxiTripRDD = new SpatialRDD(sparkContext, dataPath)

4.2 SRDD built-in geometrical library

GEOSPARK provides a built-in library for executing geometrical computation on Spatial
RDDs in parallel. This library provides native support for many common geometrical
operations (e.g., Dataset boundary, polygon union and reference system transform) that fol-
low the Open Geospatial Consortium (OGC) [7] standard. Operations in the geometrical
computation library can be invoked through either GEOSPARK Spatial SQL interface or
GEOSPARK RDD APIs. Each operation in the geometrical library employs a distributed
computation algorithm to split the entire geometrical task into small sub-tasks and execute
them in parallel. We explain the algorithms used in Dataset Boundary and Reference System
Transformation as examples (SQL is also given); other operations have similar algorithms.

DatasetBoundary (SQL: ST Envelope Aggr) This function returns the rectangle boundary
of the entire Spatial RDD. In GEOSPARK Spatial SQL, it takes as input the geometry type
column of the dataset. It uses a Reduce-like algorithm to aggregate the boundary: it calcu-
lates the merged rectangular boundary of spatial objects two by two until the boundaries of
all the objects are aggregated. This process first happens on each RDD partition in paral-
lel. After finding the aggregated boundary of each partition, it aggregates the boundary of
partitions two by two until the end. For instance, the following function returns the entire
rectangular boundary of all taxi trips’ pickup points.

/* Spatial SQL */

SELECT ST_Envelope_Aggr(TaxiTripTable.pickuppoint)

FROM TaxiTripTable

/* Scala/Java RDD API */

var envelopeBoundary = TaxiTripRDD.boundary()

ReferenceSystemTransform (SQL: ST Transform) Given a source and a target Spatial Ref-
erence System code, this function changes the Spatial Reference System (SRS) [7] of all
spatial objects in the Spatial RDD. In GEOSPARK Spatial SQL, this function also takes as
input the geometry type column of the dataset. It uses a Map-like algorithm to convert the
SRS: for each partition in a Spatial RDD, this function traverses the objects in this partition
and converts their SRS.

4.3 SRDD partitioning

Apache Spark loads the input data file into memory, physically splits its in-memory copy
to many equally sized partitions (using hash partitioning or following HDFS partitioned file
structure) and passes each partition to each worker node. This partitioning method doesn’t
preserve the spatial proximity which is crucial for improving query speed.

GEOSPARK automatically repartitions a loaded Spatial RDD according to its internal
spatial data distribution. The intuition of Spatial RDD partitioning is to group spatial objects
into the same partition based upon their spatial proximity. Spatial partitioning accelerates
the query speed of a join query. It achieves that by reducing the data shuffles across the

Author's personal copy

Geoinformatica

cluster (see Section 5.3) and avoiding unnecessary computation on partitions that are impos-
sible to have qualified data. A good spatial partitioning technique keeps all Spatial RDD
partitions balanced in terms of memory space and spatial computation, aka. load balancing.

Spatial RDD represents a very large and distributed dataset so that it is extremely
time consuming to traverse the entire Spatial RDD for obtaining the spatial distribu-
tion and partition it according to its distribution. GEOSPARK employs a low overhead
spatial partitioning approach to take advantage of global spatial distribution awareness.
Hence, GEOSPARK swiftly partitions the objects across the cluster. The spatial partitioning
technique incorporates three main steps as follows (see Algorithm 1):

Step 1: Building a global spatial grid file: In this step, the system takes samples from
each Spatial RDD partition and collects the samples to Spark master node to gen-
erate a small subset of the Spatial RDD. This subset follows the Spatial RDD’s
data distribution. Hence, if we split the subset into several load balanced parti-
tions that contain a similar number of spatial objects and apply the boundaries
of partitions to the entire Spatial RDD, the new Spatial RDD partitions should
still be load-balanced. Furthermore, the spatial locations of these records should
also be of a close spatial proximity to each other. Therefore, after sampling the
SRDD, GEOSPARK constructs one of the following spatial data structures that
splits the sampled data into partitions at the Spark master node (see Fig. 2). As
suggested by [16], GEOSPARK takes 1% percent data of the entire Spatial RDD
as the sample:

– Uniform Grid: GEOSPARK partitions the entire two-dimensional space into
equal sized grid cells which have the same length, width and area. The bound-
aries of these grid cells are applied to the entire Spatial RDD. The partition-
ing approach generates non-balanced grids which are suitable for uniform
data.

– R-Tree | Quad-Tree | KDB-Tree: This approach exploits the definition of
capacity (fanout) in the classical spatial tree index structures, R-Tree [14],

Author's personal copy

Geoinformatica

a) b)

c) d)

Fig. 2 Grids generated by SRDD spatial partitioning techniques

Quad-Tree [27] and KDB-Tree [38]: each tree node contains the same num-
ber of child nodes. GEOSPARK builds an R-Tree, Quad-Tree or KDB-Tree
on the sample subset and collects the leaf node boundaries to a grid file. It
is worth noting that: the grids of R-Tree that builds on the sample data do
not cover the entire space of the dataset. Thus, we need to have an overflow
partition to accommodate the objects that do not fall in any grid of R-Tree
partitioning. However, since Quad-Tree and KDB-Tree always start the split-
ting from the entire dataset space (the dataset boundary is either from the
user or calculated by the geometrical library in Section 4.2), we don’t the
overflow partition.

Step 2: Assigning a grid cell ID to each object: After building a global grid file,
GEOSPARK needs to know the grid inside which each object falls and then repar-
tition the Spatial RDD in accordance with the grid IDs. Therefore, GEOSPARK

duplicates the grid files and broadcasts the copies to each Spatial RDD parti-
tion. After receiving the broadcasted grid file, each original Spatial RDD partition
simultaneously starts to check each internal object against the grid file. The
results are stored in a new Spatial RDD whose schema is <Key, Value>. If an
object intersects with a grid, the grid ID will be assigned to this object and a
<grid ID, object>pair will be added to the result Spatial RDD. Because some
objects span across multiple grids and some grids overlap with each other, an
object may belong to multiple grids and hence the resulting SRDD may contain
duplicates. To guarantee the query accuracy, GEOSPARK spatial query processing
layer handles this issue using two different techniques to remove duplicates (see
Section 5.3).

Step 3: Re-partitioning SRDD across the cluster: The Spatial RDD generated by the
last step already has <Key, Value>pair schema. The Key represents a grid cell
ID. In this step, GEOSPARK repartitions the Spatial RDD by Key and then spa-
tial objects which have the same grid cell ID (Key) are grouped into the same

Author's personal copy

Geoinformatica

partition. These partitions constitute a new Spatial RDD. This step results in
massive data being shuffled across the cluster due to passing spatial objects to
their assigned worker nodes.

4.4 SRDD indexing

Spatial indexes such as R-Tree and Quad-Tree can speed up a spatial query significantly.
That is due to the fact that such indexes group nearby spatial objects together and represent
them with a tight bounding rectangle in the next higher level of the tree. A query that does
not intersect with the rectangle cannot intersect with any of the objects in the lower levels.

Since many spatial analysis algorithms (e.g., spatial data mining, geospatial statistical
learning) have to query the same Spatial RDD many times until convergence, GEOSPARK

allows the user to build spatial indexes and the built indexes can be cached, persisted and
re-used many times. However, building a spatial index for the entire dataset is not possible
because a tree-like spatial index yields additional 15% storage overhead [35, 36]. No single
machine can afford such storage overhead when the data scale becomes large.

Build local indexes To solve the problem, if the user wants to use a spatial index,
GEOSPARK will build a set of local spatial indexes rather than a single global index. In par-
ticular, GEOSPARK creates a spatial index (R-Tree or Quad-Tree) per RDD partition. These
local R-Trees / Quad-Trees only index spatial objects in their associated partition. Therefore,
this method avoids indexing all objects on a single machine.

To further speed up the query, the indexes in GEOSPARK are clustered indexes. In that
case, spatial objects in each partition are stored directly in the spatial index of this partition.
Given a query, the clustered indexes can directly return qualified spatial objects and skip the
I/O of retrieving spatial index according to the qualified object pointers.

Query local indexes When a spatial query is issued by the spatial query processing layer,
the query is divided into many smaller tasks that are processed in parallel. In case a local
spatial index exists in a certain partition, GEOSPARK will force the spatial computation to
leverage the index. In many spatial programs, the built indexes will be re-used again and
again. Hence, the created spatial indexes may lead to a tremendous saving in the overall
execution time and the index construction time can be amortized.

In addition, since spatial indexes organize spatial objects using their Minimum Bound-
ing Rectangle (MBR) instead of their real shapes, any of the queries that leverage spatial
indexes have to follow the Filter and Refine model [14, 27] (explained in Section 5): In the
filter phase, we find candidate objects (MBR) that intersect with the query object (MBR);
in the refine phase, we check the spatial relation between the candidate objects and the
query object and only return the objects that truly satisfy the required relation (contain or
intersect).

Persist local indexes To re-use the built local indexes, GEOSPARK users first need to
store the indexed spatial RDD using one of the following ways (DataFrame shares simi-
lar APIs) - (1) cache to memory: call IndexedSpatialRDD.cache() (2) persist on disk: call
IndexedSpatialRDD.saveAsObjectFile(HDFS/S3 PATH). Both methods make use of the
same algorithm: (1) go to each partition of the RDD in parallel (2) call SRDD customized
serializer to serialize the local index on each partition to a byte array, one array per partition
(see Section 4.5) (3) write the generated byte array of each partition to memory or disk. The
user can directly use the name of the cached indexed SpatialRDD in his program because

Author's personal copy

Geoinformatica

Spark manages the corresponding memory space and de-serializes byte arrays in parallel
to recover the original RDD partition information. For an indexed SpatialRDD on disk, the
user needs to call IndexedSpatialRDD.readFromObjectFile(HDFS/S3 PATH) to explicitly
read it back to Spark. Spark will read the distributed file partitions in parallel and the byte
array of each partition is de-serialized to a local index.

4.5 SRDD customized serializer

When Spark transfers objects across machines (e.g., data shuffle), all objects have to be
first serialized in byte arrays. The receiver machines will put the received data chunk
in memory and then de-serialize the data. Spark default serializer can provide a com-
pact representation of simple objects (e.g., integers). However, for objects such as spatial
objects that possess very complex geometrical shapes, the default Spark serializer can-
not efficiently provide a compact representation of such objects [39]. That may lead to
large-scale data shuffled across the network and tremendous memory overhead across the
cluster.

To overcome this issue, GEOSPARK provides a customized serializer for spatial objects
and spatial indexes. The proposed serializer uses a binary format to serialize a spatial object
and indexes. The serialized object and index are put in byte arrays.

The way to serialize a spatial object is as follows:

– Byte 1 specifies the type of the spatial object. Each supported spatial object type has a
unique ID in GEOSPARK.

– Byte 2 specifies the number of sub-objects in this spatial object.
– Byte 3 specifies the type of the first sub-object (only needed for GeometryCollection,

other types don’t need this byte).
– Byte 4 specifies the number of coordinates (n) of the first sub-object. Each coordinate

is represented by two double type (8 bytes * 2) data X and Y.
– Byte 5 - Byte 4+16*n stores the coordinate information.
– Byte 16*n+1 specifies the number of coordinates (n) of the second sub-object...
– Until the end Here all sub-objects have been serialized.

The way to serialize a single local spatial index (Quad-Tree or R-Tree, explained in
Section 4.4) is detailed below. It uses the classic N-ary tree serialization/deserialization
algorithm. It is also worth noting that, spatial objects are stored inside tree nodes.

Serialization phase It uses the Depth-First Search (DFS) to traverse each tree node from
the root following the pre-order strategy (first write current node information then write
its children nodes). This is a recursive procedure. In the iteration of each tree node (each
recursion), it first serializes the boundary of this node, and then serializes all spatial objects
in this node one by one (use the object serializer explained above). Eventually, it goes to the
children nodes of the working node. Since each N-ary tree node may have various internal
spatial objects and children nodes, it also writes a memo to note the number of spatial
objects and children nodes in this node.

De-serialization phase It still utilizes the same traverse strategy as the serialization phase
(DFS, pre-order). It starts from the root and runs a recursive algorithm. In each recursion,
it first re-constructs the boundary and internal spatial objects of the working node. Then it
starts reading the bytes of the children nodes of the working node and hands over the work
to the next recursion.

Author's personal copy

Geoinformatica

Based on our experiments in Section 7, GEOSPARK serializer is faster than Spark kryo
serializer and has smaller memory footprint when running complex spatial operations, e.g.,
spatial join query.

5 Spatial query processing layer

After the Spatial RDD layer loads, partitions, and indexes Spatial RDDs, GEOSPARK can
run spatial query processing operations on the SRDDs. The spatial query proccessing layer
provides support for a wide set of popular spatial operators that include range query, distance
query, K Nearest Neighbors (KNN) query, range join query and distance join query.

5.1 Processing spatial range and distance queries in spark

A spatial range query is fast and less resource-consuming since it only returns all the spa-
tial objects that lie within the input query window object (point, polygon, line string and so
on). Such a query can be completed by a parallelized Filter transformation in Apache Spark,
which introduces a narrow dependency. Therefore, it is not necessary to repartition the Spa-
tial RDD since repartitioning might lead to a wide dependency in the Apache Spark DAG.
A more efficient way is to broadcast the query window to all worker nodes and parallelize
the computation across the cluster. For non-closed query window objects such as a point
or a line string, the range query processing algorithm only checks the “intersect” relation
rather than “contain”.

The spatial distance query conducts the same operation on the given Spatial RDD but
adds an additional distance buffer between the query window and the candidate objects.

SQL API Spatial predicates such as “ST Contains” can be used to issue a range query in
GEOSPARK Spatial SQL. For instance, “ST Contains (A, B)” returns true if A contains B.
“ST Distance (A, B)≤ d” returns true if the distance between A and B is equal to or less
than d. The following two Spatial SQL examples depict (1) return taxi trips that are picked
up in Manhattan (2) return taxi trips that are picked up within 1 mile from Manhattan. The
other two Scala/Java examples take as input a Spatial RDD and a query window object and
then run the same operations.
/* Spatial SQL Range query */

SELECT *
FROM TaxiTripTable

WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint)

/* Spatial SQL Distance query */

SELECT *
FROM TaxiTripTable

WHERE ST_Distance(Manhattan, TaxiTripTable.pickuppoint) <= 1

/* Scala/Java RDD Range query */

RangeQuery.SpatialRangeQuery(PickupPointRDD, Manhattan)

/* Scala/Java RDD Distance query */

RangeQuery.SpatialDistanceQuery(PickupPointRDD, Manhattan, 1)

Author's personal copy

Geoinformatica

Algorithm For a given spatial range query, GEOSPARK broadcasts the query window to
each machine in the cluster. For each Spatial RDD partition (see Algorithm 2), if a spatial
index exists, it follows the Filter and Refine model: (1) uses the query window’s MBR
to query the spatial index and return the candidate results. (2) checks the spatial relation
between the query window and candidate objects using their real shapes. The truly qualified
spatial objects are returned as the partition of the new resulting Spatial RDD. If no spatial
index exists, GEOSPARK filters spatial objects using the query window and collects qualified
objects to be a partition of the new result Spatial RDD. The result Spatial RDD is sent to
the next stage of the Spark program (if needed) or persisted on disk. For a distance query,
we added a distance buffer to the query window such that it extends the boundary of the
query window to cover more area. The remaining part of distance query algorithm remains
the same with range query.

DAG and iterative spatial data mining The DAG and data flow of the range query and the
distance query are described in Fig. 3. The query processing algorithm only introduces a
single narrow dependency, which does not require data shuffle. Thus, all it needs is just one
stage. For a compute-intensive spatial data mining program, which executes range queries
many times (with different query windows), all queries access data from the same cached
indexed Spatial RDD fluently without any interruptions from wide dependencies so that the
procedure is very fast.

Fig. 3 Spatial range query and KNN query DAG and data flow

Author's personal copy

Geoinformatica

5.2 Spatial K nearest neighbors (KNN) query

The straightforward way to execute a KNN query is to rank the distances between spatial
objects and the query location, then pick the top K nearest neighbors. However, ranking
these distances in a large SRDD should be avoided if possible to avoid a large amount of
data shuffle, which is time-consuming and bandwidth-consuming. In addition, it is also not
necessary to spatially partition a Spatial RDD that incurs a single wide dependency.

SQLAPI: In Spatial SQL, “ST Neighbors(A, B, K)” issues a spatial KNN query which finds
the K nearest neighbors of A from Column B. The SQL example below returns the 100
nearest taxi trip pickup points of New York Time Square. The Scala/Java example performs
the same operation.
/* Spatial SQL API */

SELECT ST_Neighbors(TimeSquare, TaxiTripTable.pickuppoint, 100)

FROM TaxiTripTable

/* Scala/Java RDD API */

KnnQuery.SpatialKnnQuery(PickupPointRDD, TimeSquare, 100)

Algorithm To parallelize a spatial KNN query more efficiently, GEOSPARK modifies a
popular top-k algorithm [40] to fit the distributed environment (1) to be able to leverage
local spatial indexes if they exist (2) to reduce the data shuffle scale of ranking distances.
This algorithm takes an indexed/non-indexed SRDD, a query center object (point, polygon,
line string and so on) and a number K as inputs. It contains two phases (see Algorithm 3):
selection and sorting.

– Selection phase For each SRDD partition, GEOSPARK calculates the distances from
the given object to each spatial object, then maintains a local priority queue by adding
or removing objects based on the distances. Such a queue contains the nearest K objects
around the given object and becomes a partition of the new intermediate SRDD. For the
indexed Spatial RDDs, GEOSPARK can query the local indexes (only R-Tree supports
this, see [41]) in partitions to accelerate the distance calculation. Similarly, GEOSPARK

needs to follow Filter and Refine model to recheck the results returned by the index
search using their real shapes.

– Sorting phase Each partition in the Spatial RDD generated by the selection phase only
contains K objects. GEOSPARK sorts this intermediate Spatial RDD in ascending order

Author's personal copy

Geoinformatica

according to the distances. Sorting the small scale intermediate Spatial RDD is much
faster than sorting the original Spatial RDD directly. The sorting phase also outputs an
intermediate Spatial RDD. GEOSPARK collects the first K objects in the intermediate
Spatial RDD across the cluster and returns those objects as the final result.

DAG and iterative spatial data mining Figure 3 depicts the DAG and data flow of spatial
KNN query. The query processing algorithm includes two transformations: selection, sort-
ing. The former incurs a narrow dependency and the latter introduces a wide dependency
that results in a small data shuffle. These two transformations will be scheduled to two
stages without pipeline execution. However, because the intermediate Spatial RDD gen-
erated by the first transformation only has K objects per partition, the shuffle caused by
transforming this Spatial RDD is very small and will not impact the execution much. For
an iterative spatial data mining using KNN query, the two intermediate Spatial RDDs are
dropped after each query execution but the indexed Spatial RDD still resides in memory
cache. Recycling the indexed SpatialRDDs accelerates the iterative execution to a greater extent.

5.3 Processing spatial join queries in spark

Spatial join, a computation and data intensive operation, incurs high data shuffle in Spark.
Taking into account the spatial proximity of spatial objects, GEOSPARK partitions Spatial
RDDs in advance based on the objects’ spatial locations in Spatial RDD layer (Section 4.3)
and caches the Spatial RDDs. Therefore, GEOSPARK join query algorithm re-uses the
spatial partitioned RDDs (probably indexed as well) and avoids large scale data shuffle.
Moreover, since GEOSPARK skips the partitions which are guaranteed not to satisfy the join
query predicate, it can significantly accelerate the overall spatial join processing.

API GEOSPARK provides different Spatial SQL APIs for range join query and distance join
query: (1) Given two geometry type columns, a range join query returns all spatial object
pairs that satisfy a particular predicate such as “ST Contains”. The example below returns
<taxi stop station, taxi trips pickup point> pairs of which the pickup point falls inside the
taxi stop station. (2) A distance join query returns all possible spatial object pairs that are
within a certain distance. The example below returns <taxi stop station, taxi trips pickup
point> of which the pickup point is within 1 mile of the taxi stop station. The Scala/Java
examples below perform the same operations but take as inputs two Spatial RDDs.
/* Spatial SQL Range join query */

SELECT *
FROM TaxiStopStations, TaxiTripTable

WHERE ST_Contains(TaxiStopStations.bound,

TaxiTripTable.pickuppoint)

/* Spatial SQL Distance join query */

SELECT *
FROM TaxiStopStation, TaxiTripTable

WHERE ST_Distance(TaxiStopStations.bound,

TaxiTripTable.pickuppoint) <= 1

/* Scala/Java RDD Range join query */

JoinQuery.SpatialJoinQuery(PickupPointRDD, StopStationRDD)

Author's personal copy

Geoinformatica

/* Scala/Java RDD Distance join query */

JoinQuery.DistanceJoinQuery(PickupPointRDD, StopStationRDD, 1)

GSJoin ALGORITHM GEOSPARK combines the approaches proposed by [42–44] to a new
spatial range join algorithm, namely GSJoin, that re-uses spatial partitioned RDDs as well
as their indexes. This algorithm, which takes two spatial partitioned RDDs A and B (i.e.,
TaxiStopStations and TaxiTripTable), consists of three steps as follows (see Algorithm 4
and Fig. 4).

– Zip partitions This step zips the partitions from A and B (TaxiStopStations and Tax-
iTripTable) according to their grid IDs. For instance, we merge Partition 1 from A and
B to a bigger partition which has two sub-partitions. Both Partition 1 s from A and
B have the spatial objects that fall inside Grid 1 (see Section 4.3). Partition 1 from A
(TaxiStopStations) contains all taxi stop stations that locate in Grid 1 and Partition 1
from B (TaxiTripTable) contains all taxi trips that are picked up in Grid 1. Note that, the
data in Partition1 from A is guaranteed to disjoint from other partitions (except 1) of B
because they belong to totally different spatial regions (see Section 4.3). Thus, GSJoin
does not waste time on checking other partitions from B with Partition 1 from A. This
Zip operation applies to all partitions from A and B and produces an intermediate RDD
called C.

– Partition-level local join (no index) This step runs a partition-level local range join
on each partition of C. Each partition from C has two sub-partitions, one from A and
one from B. If no indexes exist on both the sub-partitions, the local join will per-
form a nested loop join that traverses all possible pairs of spatial objects from the two
sub-partitions and returns the qualified pairs. This costs O(n2) complexity on each C
partition, where n is the number of objects in a sub-partition.

– Partition-level local join (with index) During the partition-level local join step, if an
index exists on either one sub-partition (say, sub-partition from B is indexed), this local
join will do an index-nested loop. It uses each object in the sub-partition from A as the
query window to query the index of the sub-partition from B. This costs O(n*log(n))
complexity on each C partition, where n is the number of objects in a sub-partition. It
is worth noting that this step also follows the Filter and Refine model which is similar
to this part in Range query and Distance query (mentioned in Section 4.4). Each query

Fig. 4 Join query DAG and data flow

Author's personal copy

Geoinformatica

window needs to recheck the real shapes of candidate spatial objects which are obtained
by scanning the index.

– Remove duplicates This step removes the duplicated spatial objects introduced by
spatial partitioning. At that time, we duplicate the spatial objects that intersect with
multiple grids and assign different grid IDs to these duplicates and this will lead to
duplicated results eventually. Figure 5 illustrates an example. Since both Pa and Pb fall
in Grid 1, 2, 3, and 4, the result “Pa intersects Pb” will be reported four times in the
final join result set. In order to remove the duplicates, two methods are available. The
first method is to use a “GroupBy” operation to collect all objects that intersect with Pa
in this cluster then remove the duplicated ones. This method introduces a big data shuf-
fle across the cluster because it needs to do a GroupBy on all results. We should always
avoid unnecessary data shuffle. The second method is called “Reference point” [45].
The intuition of the reference point is to establish a rule that, if duplicated results appear,
only report it once. When doing a partition-level local join, GEOSPARK calculates the
intersection of two intersecting objects (one from SRDD A and the other from B) and
only reports the pair of objects when the reference point falls in the associated grid of
this partition. To find this reference point, we first calculate the intersection shape of
the two intersected objects. The X-coordinate/Y-coordinate of a reference point is the
max X/Y of all coordinates of the intersection. In Fig. 5, we use the red point as the ref-
erence point and only report “Pa intersects Pb” when doing the local join on Partition 2.
Note that, the reference point idea only works for Quad-Tree and KDB-Tree partition-
ing because their grids don’t overlap with each other. R-Tree and other methods that
produce overlapped grids have to use the first method because even the reference point
can still appear in multiple grids.

Note that the GSJoin algorithm can query Spatial RDDs that are partitioned by any
GEOSPARK spatial partitioning method including Uniform grids, R-Tree grids, Quad-Tree
grids, KDB-Tree grids and indexed by any of the indexing methods such as R-Tree index
and Quad-Tree index. That is why we also implemented other partitioning methods and
indexes in GEOSPARK for benchmarking purpose.

Broadcast join algorithm Besides GSJoin, GEOSPARK also provides a straightforward
broadcast range join algorithm, which works well for small scale Spatial RDDs. When at
least one of the two input Spatial RDDs is very small, this algorithm broadcasts the small
Spatial RDD A to each partition of the other Spatial RDD B. Then, a partition-level local
join (see GSJoin) happens on all partitions of B in parallel. The Broadcast join algorithm

Fig. 5 Removing duplicates

Author's personal copy

Geoinformatica

has two important features: (1) it is faster than GSJoin for very small datasets because it
does not require any spatial partitioning methods and duplicate removal. (2) it may lead to
system failure or very long execution time for large datasets because it shuffles an entire
SRDD A to each partition of SRDD B.

Distance join algorithm The distance join algorithms can be seen as extensions to the
range join algorithms, GSJoin and Broadcast join. The only difference is that we add a
distance buffer to all objects in either Spatial RDDA or B at the very beginning (even before
spatial partitioning) to extend their boundaries. The extended spatial objects can be used in
both range join algorithms.

Spark DAG The DAG and data flow of GSJoin are shown in Fig. 4. The join query
introduces two transformations: zip partitions and partition-level local join. Both of them
incur narrow dependencies. Therefore, they are pipelined to one stage with fast exe-
cution. On the contrary, the broadcast join algorithm (see the right part in Fig. 4)
introduces two wide dependencies which lead to heavy network traffic and intensive
computation. Until now, the effect of spatial partitioning is shown by degrading wide
dependencies to narrow dependencies. For spatial analytics program that runs multiple join
queries, the repartitioned A and B are cached into memory and recycled for each join
query.

5.4 Spatial SQL query optimization

An important feature of GEOSPARK is the Spatial SQL query optimizer. GEOSPARK opti-
mizer extends SparkSQL Catalyst optimizer to support Spatial SQL optimization. It takes as
input the Spatial SQL statement written by the user and generates an efficient execution plan
in terms of time cost. For advanced users who have the necessary Spark knowledge, they can
use GEOSPARK Scala /Java RDD APIs to achieve granular control over their applications
(Fig. 6).

Author's personal copy

Geoinformatica

Fig. 6 Phases of query optimization in SparkSQL+GEOSPARK. Black diamonds: phases; Rounded rectan-
gles: Catalyst AST; Blue rectangles: GEOSPARK’s extension

5.4.1 Extend SparkSQL catalyst optimizer

SparkSQL Catalyst optimizer [22] runs its query optimization (aka., query planning) in
four phases: Analysis, Logical Optimization, Physical Planning and Code Generation. After
reading the entered SQL query, the SQL parser will generate the Abstract Syntax Tree
(AST) and pass it to Catalyst. Each tree node in this AST is called Expression which is an
operator such as Project, Sum and so on.

Analysis In this phase, Catalyst optimizer retrieves participating DataFrame information
from Spark catalog and maps corresponding columns to the AST tree nodes. GEOSPARK

SQL API (e.g., ST GeomFromWKT and ST Contains) are written in Spark internal Expres-
sion format (not User Defined Function) such that Catalyst can easily understand the Spatial
SQL functions and fuse them into the tree in this phase.

Logical optimization During this phase, Catalyst tries to apply some heuristic rules to the
AST and transform the tree into a simplified version. Some common DBMS Heuristics-
Based Optimization (HBO) are used here including constant folding, predicate pushdown,
and projection pruning. To make this happen, Catalyst utilizes a mechanism called Pattern-
Matching to capture a sub-tree of the AST according to the pattern description of a rule and
then return a transformed new sub-tree.

Physical planning In this phase, Catalyst takes an optimized logical plan and applies
Cost-Based Optimization (CBO) rules on it. Although Spark internally calls CBO rules
as strategies, Spark still uses pattern matching mechanism to transform the AST based on
the strategies. All current Spark strategies are only used to select join algorithms such as
broadcast join, sort merge join and so on.

Code generation Catalyst uses the quasiquotes feature in Scala to generate Java bytecode
for JVMs in this phase. In Spark, each Expression provides two implementations of its logic.
One is written in native Scala and the other one is written in Scala quasiquotes format. The
code generation details are not included in this paper since they are out of scope.

5.4.2 Heuristic rules for logical plans

GEOSPARK optimizer adds several heuristic rules to Catalyst optimizer. During the Logical
Optimization phase, Catalyst can optimize the AST that contains Spatial SQL Expressions.

Author's personal copy

Geoinformatica

This heuristics-based optimization (HBO) doesn’t require any cost model. Three rules are
currently available in GEOSPARK optimizer.

Predicate pushdown The intuition of predicate pushdown is that some predicates of
GEOSPARK Spatial SQL queries can be “pushed” down closer to the data. In most cases,
that is at the beginning part of an execution plan. The predicate pushdown can do range
query filter on data before it is sent to other time-consuming operations such as a spatial
join. Consider the SQL query below, a better plan is to use the range query filter to query
TaxiStopStations.bound and only return the data within Manhattan then do the range join.

SELECT * FROM TaxiStopStations, TaxiTripTable

WHERE ST_Contains(TaxiStopStations.bound,

TaxiTripTable.pickuppoint)

AND ST_Contains(Manhattan, TaxiStopStations.bound)

Predicate merging Given a Spatial SQL query with multiple range query filters, it is bet-
ter to merge the polygonal shapes of these filters into a single filter and run it against the
underlying Spatial RDD/DataFrame. Consider the first SQL query below, it actually runs
two range query filters, Manhattan’s polygonal boundary and Queens’ polygonal boundary,
on the taxi trip pick up points. Apparently, this query should return nothing because of no
intersection between Manhattan and Queens. A better logical plan should use the intersec-
tion of all ANDing filters as the new filter and run the single filter against the DataFrame
(see Fig. 7). Of course, if the area of the intersection is 0, we don’t even need to run this
query. Consider the second query below, we can actually take the polygon union of these
range query filters as a new filter instead of running the original filters separately.

SELECT * FROM TaxiTripTable

WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint)

AND ST_Contains(Queens, TaxiTripTable.pickuppoint)

SELECT * FROM TaxiTripTable

WHERE ST_Contains(Manhattan, TaxiTripTable.pickuppoint)

OR ST_Contains(Queens, TaxiTripTable.pickuppoint)

This rule speeds up most spatial query cases and particularly favors the query on indexed
Spatial DataFrames: querying an indexed DataFrame will first scan the index using one
range filter (one sequential scan) and apply other range filters on the returned result (one
partial table scan). Using a merged predicate only takes a single index scan.

a) b)

Fig. 7 Merge the range query predicates

Author's personal copy

Geoinformatica

Intersection query rewrite Calculating the intersection (a polygonal shape) between two
spatial columns is quite common in spatial analytics (e.g., find the intersection between
the habitats of lions and zebras). Consider the first two queries below, both of them
require O(N2) times intersection calculation for running ST Intersection on any possible
<polygon, polygon> pairs between Lions.habitat and Zebras.habitat. This plan is pro-
hibitively expensive because (1) the number of intersection calculations is tremendous (2)
polygon intersection algorithms are orders of magnitude slower than intersects relation
check (in other words, you can easily know whether two polygons intersect or not but
finding the exact intersection shape is difficult). A better rewritten query is to first use
ST Intersects predicate to trigger a spatial join query and then perform the ST Intersection
only on returned <polygon, polygon> pairs that are guaranteed to have intersections. The
spatial join query is much faster because it is optimized by GEOSPARK. The last two queries
below are the rewritten queries and their logical plans first run the ST Intersects.

/* Without query rewrite */

SELECT ST_Intersection(Lions.habitat, Zebras.habitat)

FROM Lions, Zebras

SELECT *
FROM Lions, Zebras

WHERE ST_Intersection(Lions, Zebras)>10

/* With query rewrite */

SELECT ST_Intersection(Lions.habitat, Zebras.habitat)

FROM Lions, Zebras WHERE ST_Intersects(Lions.habitat,

Zebras.habitat);

SELECT *
FROM Lions, Zebras

WHERE ST_Intersection(Lions, Zebras)>10

AND ST_Intersects(Lions.habitat, Zebras.habitat)

5.4.3 Cost-based strategies for physical plans

GEOSPARK provides Cost-Based strategies for physical plan optimization in addition to
Spark’s own join algorithm selection strategies. Physical planning only replaces the logical
operator (tree node) with Spark’s physical operator and has no change on the tree struc-
ture. In order to calculate the cost models, GEOSPARK maintains its own catalog called
GEOSPARK statistics which stores the statistical information of the spatial columns in
DataFrames. Two strategies are available in GEOSPARK, index scan selection and spatial
join algorithm selection.

GEOSPARK STATISTICS GEOSPARK maintains a set of statistical information which can be
used for building cost models (e..g, calculate range query selectivity). To collect the infor-
mation, the user needs to explicitly call GEOSPARK Analyze() function. For example,
GeoSparkSession.Analyze(dataFrameA, column1) asks GEOSPARK to collect the statistics
from the column 1 of DataFrameA. Currently, GEOSPARK only stores the global MBR and
the count of the specified column. The Analyze() function may take some time to finish

Author's personal copy

Geoinformatica

because collecting the statistics of the given column runs a Reduce function. For instance,
to calculate the global MBR, GEOSPARK will reduce the MBR of each tuple in this column
to a big MBR. To minimize the analyzing overhead, GEOSPARK also aggregates the count
in the same Reduce function. However, although Analyze() takes time, GEOSPARK only
executes it once and doesn’t need to update it because RDDs are immutable.

Index scan selection Given a SQL range query, if a participating DataFrame column is
indexed by R-Tree or Quad-Tree, the optimizer will decide whether GEOSPARK should
use it or not. Using spatial index in a spatial range query is not always the best choice.
For instance, for polygon and line string data, GEOSPARK has to perform a refine phase
on the results returned by index scanning in order to guarantee the accuracy. If a range
query is not selective and returns a large fraction of the raw data, the overall time of the
refine phase and index scan (filter phase) may even be longer than a simple table scan.
To make a decision, GEOSPARK first calculates the selectivity of the given range query as
follows:

Selectivity = Query window′s area

Global MBR′s area

If the selectivity is less than 1%, GEOSPARK will consider the query as a highly selective
query and use the built spatial index on each partition of the DataFrame.

SPATIAL JOIN ALGORITHM SELECTION GEOSPARK optimizer can adaptively choose a proper
join algorithm, GSJoin or Broadcast Join. As we mentioned in Section 5.3, Broadcast Join
is good for small datasets but GSJoin is much more scalable. Therefore, GEOSPARK query
optimizer defines a join strategy as follows: If the count of one input DataFrame of the join
query is smaller than a system-tuned number of rows (i.e., 1000 rows), the Broadcast join
algorithmwill be used and this DataFrame will be broadcasted; otherwise,GSJoin algorithm
will be used.

6 Application use cases

6.1 Application 1: region heat map

Assume that a data scientist in a New York City Taxi Company would like to visualize
the taxi trip pickup point distribution in the Manhattan area on a map. He can first call
GEOSPARK Range Query (SQL interface) to return the taxi trip pickup points in Man-
hattan and then call GEOSPARK Heat Map to plot the distribution of these pickup points.
The SQL statement issues a range query using “ST Contains” predicate. The Heat Map API
takes as input the resolution of the desired map and its “visualize” function takes a Spatial
RDD, the result of the range query, and generates the corresponding heat map. In the gen-
erated heat map (Fig. 8), red colored area means that lots of taxi trips were picked up in this
area. The scientist finds that a significant number of taxi trips started from the Manhattan
area. The pseudo code is given in Fig. 9.

The heat map visualization application uses the following steps to visualize a Spatial
RDD:

Step I: Rasterize Spatial Objects. To plot a spatial object on a raster image, the object
has to be rasterized to the corresponding pixels so that the map generator can

Author's personal copy

Geoinformatica

Fig. 8 Region Heat Map: taxi trip pickup points in Manhattan

plot out the pixels. A spatial object can be rasterized to many pixels and a pixel
can be mapped by many spatial objects. This viz operator takes as input the spa-
tial RDD and the designated map resolution. It then rasterizes each spatial object
in the Spatial RDD to the map pixels in parallel. Each map pixel is mapped
by the object’s outline (Fig. 10a) or filling area (Fig. 10b). A pixel has its own
coordinate (X, Y) which stands for its position on the final image. The viz
layer performs the rasterization viz operator using a Map function and outputs a
“Pixel” RDD which only contains pixels.

Step II: Count by Pixels Since a single pixel may be mapped by many spatial objects,
this viz operator is to CountBy pixels according to their pixel coordinates. On
the other hand, this layer is equipped with a distributed visualization mechanism
to generate high resolution (billion pixels) maps: this layer repartitions the Pixel
RDD using Uniform grids (see Fig. 2a). The intuition is that we want to produce
map image tiles [46] in parallel instead of outputting a high resolution map on
the master machine which will crash the master’s JVM directly. The map tiles
can be directly loaded by map service software such as Google Maps, MapBox
and ArcGIS. After repartitioning the pixels using uniform grids (map tile bound-
aries), GEOSPARK runs a local CountByKey (the keys are pixel coordinates) in
each partition because nearby pixels are put in the same partition. This trans-
forms the Pixel RDD to a PairRDD in <Pixel, Count> format. GEOSPARK will
render a partial image on each Pixel RDD partition in Operator III.

Step III: Render Map Images. This operator first runs a Map function in parallel. Each
pixel in <Pixel, Count> RDD is assigned a color according to its count in this

Fig. 9 Region Heat Map: Range Query + Heat Map

Author's personal copy

Geoinformatica

a) b)

Fig. 10 Rasterize spatial objects to pixels

viz operator. The relation between a color and a count is defined by a user-
supplied mathematical function such as Piecewise function. For instance,

Color =
⎧
⎨

⎩

Yellow Count ∈ [0, 100)
P ink Count ∈ [100, 200)
Red Count ∈ [200, 255]

The user will see a three-colored image by using this function. After determining
the colors, this operator renders a map image on each partition of the <Pixel,
Color> RDD in parallel. The image of each partition is a map tile [46]. This
viz operator finally generates a <ID, map image tile> RDD for the user, where
ID is the tile ID. Moreover, this layer can stitch <ID, partial image> RDD to a
single big image if needed.

Step IV: Overlay Multiple Maps. The user may also need spatial references such as
landmarks or country boundaries to locate his POI when he views a map. This
viz operator takes as input multiple <ID, partial image> RDDs and overlays
them one by one in the order specified by the user. During the execution of this
operator, this layer replaces (or mixes) the background pixel color with the front
pixel color in parallel using a Map function.

6.2 Application 2: spatial aggregation

A data scientist in NYC Taxi Company would like to further investigate the distribution
of taxi pickup points because he makes an interesting observation from the Region Heat
Map: the distribution is very unbalanced. New York City has many taxi zones and each
zone may have very different demographic information. Therefore, this time, the scientist
wants to know the pickup points distribution per taxi zone. This spatial aggregation can be
easily completed by GEOSPARK: He first uses Range Join Query (SQL interface)
to find the taxi trips that are picked up in each taxi zone then calculates the count per taxi
zone. The result of this aggregation can be directly visualized by the GEOSPARK Choropleth
Map. The corresponding pseudo code is available in Fig. 11. The SQL statement issues a
range join query since the inputs of “ST Contains” are from two datasets. The “COUNT()”
function counts the taxi trip pickup points per taxi zone. Each row in the join query result
is in the form of “TaxiZoneShape,Count”. The Choropleth Map API takes as input the map
resolution and its “Visualize” function can plot the given join query result. Figure 12a is the
generated Choropleth Map. A red colored zone means that more taxi trips were picked up
in that zone. According to the Choropleth map, the scientist finds that the hottest zones are

Author's personal copy

Geoinformatica

Fig. 11 Spatial Aggregation: Range Join Query + Choropleth Map

in Manhattan but there are two zones which are in orange colors but far from Manhattan.
Then, he realizes these two zones are La Guardia Airport and JFK Airport, respectively.

6.3 Application 3: spatial co-location patternmining

After finding many pickup points in La Guardia Airport and JFK Airport, the data scientist
in the NYC Taxi Company makes a guess that the taxi pickup points are co-located with
the New York area landmarks such as airports, museums, hospitals, colleges and so on. In
other words, many taxi trips start from area landmarks (see Fig. 12b). He wants to use a
quantitative metric to measure the degree of the co-location pattern. This procedure is called
spatial co-location pattern mining.

Spatial co-location pattern mining is defined by two kinds of spatial objects that are
often located in a neighborhood relationship. Ripley’s K function [47] is commonly used
in judging co-location. It usually executes multiple times and forms a 2 dimensional curve
for observation. To obtain Ripley’s K in each iteration, we need to calculate the adjacency
matrix of two types of spatial objects given an updated distance restriction. To obtain the
adjacency matrix, a time-consuming distance join is necessary. The user can use GEOSPARK

a) b)

Fig. 12 Visualized spatial analytics

Author's personal copy

Geoinformatica

Fig. 13 Spatial co-location pattern mining: iterative distance join query

RDD APIs to assemble this application2 and migrate the adjacency matrix computation to
a Spark cluster.

A snippet of the application source code is given in Fig. 13. The user first needs to
create two Spatial RDDs, PickupPoints from a CSV file and AreaLandmarks from an ESRI
shapefile. Then he should run spatial partitioning and build local index on the larger Spatial
RDD (PickupPoints RDD is much larger in this case) and cache the processed Spatial RDD.
Since Ripley’s K requires many iterations (say, 10 iterations) with a changing distance, the
user should write a for-loop. In each loop, he just needs to call DistanceJoinQuery
API to join PickupPoints (cached) and AreaLandmarks. DistanceJoinQuery takes as
input two Spatial RDDs and a distance and returns the spatial objects pairs that are located
within the distance limitation. Although the distance is changing in each loop, the cached
PickupPoints can be quickly loaded from memory to save plenty of time. The experiment
verifies this conclusion.

7 Experiments

This section presents a comprehensive experiment analysis that experimentally evaluates
the performance of GEOSPARK and other spatial data processing systems. We compare four
main systems:

– GEOSPARK: we use GEOSPARK 1.0.1, the latest release. It includes all functions needed
in this experiment. We also open GEOSPARK customized serializer to improve the
performance.

– Simba [23]: we use Simba’s latest GitHub repository which supports Spark 2.1. By
default, Simba automatically opens Spark Kryo serializer.

– Magellan [24]: Magellan 1.0.6, the latest version, is used in our experiment. By default,
Magellan automatically opens Spark Kryo serializer.

– SpatialHadoop [9]: we use SpatialHadoop 2.4.2 in the main GitHub repository in the
experiments.

2Runnable example: https://github.com/jiayuasu/GeoSparkTemplateProject

Author's personal copy

https://github.com/jiayuasu/GeoSparkTemplateProject

Geoinformatica

Table 2 Dataset description

Dataset Size Description

OSMpostal 1.4 GB 171 thousand polygons, all postal areas on the planet (from Open Street
Map)

TIGERedges 62 GB 72.7 million line strings, all streets in US. Each street is a line string
which consists of multiple line segments

OSMobject 90 GB 263 million polygons, all spatial objects on the planet (fromOpen Street
Map)

NYCtaxi 180 GB 1.3 billion points, New York City Yellow Taxi trip information

Datasets Table 2 summarizes four real spatial datasets used in the experiments, described
as follows:

– OSMpostal [48]: contains 171 thousand polygons extracted from Open Street Maps.
These polygons are the boundaries of all postal code areas on the planet.

– TIGERedges [49]: contains 72.7 million line strings provided by United States Census
Bureau TIGER project. These line strings are all streets in the United States. Each of
them consists of many line segments.

– OSMobject [50]: includes the polygonal boundaries of all spatial objects on the planet
(from Open Street Maps). There are 263 million polygons in this dataset.

– NYCtaxi [37]: The dataset contains the detailed records of over 1.1 billion individual
taxi trips in the city from January 2009 through December 2016. Each record includes
pick-up and drop-off dates/times, pick-up and drop-off precise location coordinates,
trip distances, itemized fares, and payment methods. But we only use the pick-up points
in our experiment.

Workload We run the following spatial queries on the evaluated systems. Distance query
and distance join results are not stated in the evaluation because they follow similar
algorithms as the range query and the range join query, respectively.

– Spatial Range query: We run spatial range queries on NYCtaxi, OSMobject and
TIGERedges with different query selectivities. Simba can only execute range queries
on points and polygons without index. Its local index construction fails on points and
polygons due to extremely high memory utilization. Magellan does not support accurate
queries on polygons and line strings.

– Spatial KNN query: We test the spatial KNN query by varying K from 1 to 1000 on
NYCtaxi, OSMobject and TIGERedges datasets. Only GEOSPARK and SpatialHadoop
support KNN query. Simba offers a KNN API but doesn’t return any results.

– Spatial Range join query (��): We run OSMpostal �� NYCtaxi, OSMpostal �� OSMob-
ject, OSMpostal �� TIGERedges. Magellan only supports the first case (polygons ��
points). Simba only offers distance join between points and points (explained later).

Cluster settings We conduct the experiments on a cluster which has one master node and
four worker nodes. Each machine has an Intel Xeon E5-2687WV4 CPU (12 cores, 3.0 GHz
per core), 100 GB memory, and 4 TB HDD. We also install Apache Hadoop 2.6 and Apache
Spark 2.1.1. We assign 10 GB memory to the Spark driver program that runs on the master
machine, which is quite enough to handle any necessary global computation.

Author's personal copy

Geoinformatica

Performance metrics We use two main metrics to measure the performance of the evalu-
ated systems: (1) Execution time: It stands for the total run time the system takes to execute
a given job. (2) Peak execution memory: that represents the highest execution memory used
by the system when running a given job.

7.1 Performance of range query

This section evaluates the performance of all four systems on NYCtaxi points, OSMob-
ject polygons and TIGERedges linestrings (see Figs. 16, 17, and 18). We vary the range
query selectivity factor as follows: (1) we use the entire dataset boundary as the largest
query window.(2) then, we reduce the window size to its 1

4 th and generate many rectangu-
lar windows in this size but at random locations within the dataset boundary. (3) we keep
reducing the window size until we get four different query selectivity factors (window size):
1
64*boundary (SELE*1),

1
16*boundary,

1
4*boundary, boundary (SELE*64).

7.1.1 Impact of GEOSPARK local indexing

For the NYCtaxi point dataset, the fastest GEOSPARK method is GEOSPARK range query
without index (Fig. 14). We created different versions of GeoSpark, as follows: (1) NoIn-
dex: GeoSpark running with no local indexes built in each SRDD partition. (2) RTree:
GeoSpark running with R-Tree index built on each local SRDD partition. RTree-Search rep-
resents the R-tree search time, whereas RTree-Build denotes the R-Tree construction time.
(3) QuadTree: Similar to RTree but with Quad-Tree index stored in each local SRDD par-
tition instead. The NoIndex version of GEOSPARK has similar range query search time as
the indexed version of GEOSPARK but the indexed (i.e., RTree or QuadTree) range query
needs extra time to build the index. This is because the NYCtaxi point data is too simple

Fig. 14 The impact of GEOSPARK local index on NYCtaxi range query

Author's personal copy

Geoinformatica

a) b)

Fig. 15 The impact of GEOSPARK local index on complex shapes range query

and using index to prune data does not save much computation time. The RTree version
even has around 5% longer search time than the NoIndex version because GEOSPARK fol-
lows the Filter and Refine model: after searching local indexes using MBRs, GEOSPARK

rechecks the spatial relation using real shapes of query window and spatial objects in order
to guarantee the query accuracy (the window can be a very complex polygon rather than
a rectangle). As it turns out in Fig. 15a and b (OSMobject and TIGERedges), GEOSPARK

RTree leads to 2 times less search time than the NoIndex version. GEOSPARK QuadTree
exhibits 4 times less search time than the NoIndex version. This makes sense because the
tested polygon data and line string data have very complex shapes. For instance, a build-
ing’s polygonal boundary (OSMobject) and a street’s shape (TIGERedges) may have more
than 20 coordinates. A local index in GEOSPARK can prune lots of useless data to save the
computation time while the regular range query needs to check all complex shapes in each
partition across the cluster.

7.1.2 Comparing different systems

We show the range query execution times of the four systems in Figs. 16a, 17a and 18a.
Simba can run range query on NYCtaxi points and OSMobject polygons without index. We
do not use Simba R-Tree index range query because it always runs out of memory on these
datasets even though the tested cluster has 400GB memory. Magellan and SpatialHadoop
do not use indexes in processing a range query by default. We do not show the results for
Magellan on OSMobject polygons and TIGERedges linestrings because it only uses MBRs
and hence cannot return accurate query results. We use the most optimized GEOSPARK

in the comparison: GEOSPARK range query without index in Fig. 16a and QuadTree in
Figs. 17a and 18a.

For NYCtaxi point data (Fig. 16a), GEOSPARK shows the least execution time. Further-
more, its execution time is almost constant on all query selectivities because it finishes the
range query almost right after loading the data. On highly selective queries (ie.e., SELE*1),
GEOSPARK has similar execution time with Simba and Magellan. Moreover, the execution
times of Simba, Magellan and SpatialHadoop increase with the growth of the query window
size. On SELE*4, *16 and *64, Simba and Magellan are 2-3 times slower than GEOSPARK.

Author's personal copy

Geoinformatica

a) b)

Fig. 16 Range query with different selectivity (SELE) on NYCtaxi points

a) b)

Fig. 17 Range query with different selectivity (SELE) on OSMobject polygons

a) b)

Fig. 18 Range query with different selectivity (SELE) on TIGERedges line strings

Author's personal copy

Geoinformatica

SpatialHadoop is 2 times slower than GEOSPARK on SELE*1 and 10 times slower than
GEOSPARK on SELE*64.

For OSMobject polygons and TIGERedges linestrings (Figs. 17a and 18a), GEOSPARK

still has the shortest execution time. On OSMobject polygons, the QuadTree version of
GEOSPARK is around 2-3 times faster than Simba and 20 times faster than SpatialHadoop.

GEOSPARK outperforms its counterparts for the following reasons: (1) on polygon and
line string data, GEOSPARK’s Quad-Tree local index can speed up the query by pruning a
large amount of data. (2) GEOSPARK serializer overrides the default Spark generic serializer
to use our own spatial data serialization logic.

According to range query’s DAG (see Fig. 3), Spark performs RDD transformations to
produce the result RDD and internally calls the serializer. GEOSPARK serializer directly
tells Spark how to understand and serialize the spatial data quickly while the default Spark
generic serializer wastes some time on understanding complex spatial objects. Although the
GEOSPARK serializer is faster than the Spark default serializer, it is worth noting that in
order to support heterogeneous spatial objects in a single Spatial RDD, GEOSPARK cus-
tomized serializer costs some extra bytes to specify the geometry type per spatial object
besides the coordinates (see Section 4.5): (1) 3 extra bytes on point objects (15% addi-
tional memory footprint) (2) 2+n extra bytes on polygons or line strings, where n is the
number of coordinates (7% addition memory footprint, if n = 10). Our experiment veri-
fies the theoretical values. Figures 16b, 17b and 18b illustrate the peak memory utilization
of different systems. Since the range query processing algorithm is similar on evaluated
systems (a filter operation on all data partitions), the peak memory utilization is roughly
equal to the input data memory footprint. Compared to Simba and Magellan, GEOSPARK

costs around 10% additional memory on points and polygons (Figs. 16b, 17b). GEOSPARK

Quad-Tree index range query costs 13% additional memory and R-Tree index range query
costs 30% additional memory. This is because a tree index takes 10%-40% additional space
to store the tree node information [35, 36]. In general, R-Tree consumes more space because
it needs to store MBRs and extra child node information while Quad-Tree always has 4 child
nodes. SpatialHadoop always has 2-3 times less memory utilization because Hadoop-based
systems don’t utilize memory much and all intermediate data is put on the disk.

7.2 Performance of K nearest neighbors (KNN) query

This section studies the performance of GEOSPARK and SpatialHadoop. SpatialHadoop
does not use an index for KNN queries by default. Simba offers a KNN API but the source
code does not return any results on the tested datasets. We vary K to take the values of 1,
10, 100 and 1000 and randomly pick several query points within the dataset boundaries.

Since the KNN query shows similar performance trends as the range query, we only
put the results of KNN on NYCtaxi points and OSMobject polygons. R-Tree [14, 41] data
structure supports KNN because it uses MBR to represent tree node boundaries.

As depicted in Figs. 19a and 20a, on NYCtaxi points, GEOSPARK NoIndex is 2̃0 times
faster than SpatialHadoop and GEOSPARK RTree is 6̃ times faster than SpatialHadoop. On
OSMobject polygons, GEOSPARK NoIndex is 5 times faster than SpatialHadoop and the
RTree version of GEOSPARK is 7 times faster than SpatialHadoop in terms of total execution
time including the index building time. On point data, GEOSPARK NoIndex shows similar
search time performance as the indexed version (explained in Section 7.1).

The execution time of a KNN query in GEOSPARK and SpatialHadoop remains constant
with different values of K. That happens because the value of K is very small in contrast to
the input data and the majority of the time is spent on processing the input data.

Author's personal copy

Geoinformatica

a) b)

Fig. 19 KNN query with different K on NYCtaxi points

The peak memory utilization of GEOSPARK is 2̃ times higher than SpatialHadoop
because Spark stores intermediate data in main memory. It is also worth noting that,
although GEOSPARK’s peak memory utilization remains constant in processing range and
KNN queries, SpatialHadoop’s peak memory utilization of KNN queries is 3 times larger
than that of range queries because SpatialHadoop needs to sort the candidate objects across
the cluster, which leads to a data shuffle across the network. In practice, heavy network data
transfer increases memory utilization.

7.3 Performance of range join query

This section evaluates the range join query performance of compared systems when join-
ing the following datasets: (a) OSMpostal �� NYCtaxi, (b) OSMpostal �� OSMobject, (c)
OSMpostal �� TIGERedges.

a) b)

Fig. 20 KNN query with different K on OSMobject polygons

Author's personal copy

Geoinformatica

Fig. 21 The impact of spatial partitioning on range join in GEOSPARK

7.3.1 Impact of spatial partitioning

As depicted in Fig. 21, GEOSPARK KDB-Tree partitioning method exhibits the shortest
local join time (KDB-LocalJoin) on all join queries. Quad-Tree partitioning local join time
(QUAD-LocalJoin) is 1.5 times slower than KDB-LocalJoin. R-Tree partitioning local join
time (R-LocalJoin) is around 2 times slower than KDB-Tree partitioning. This is because
KDB-Tree partitioning generates more load-balanced grid cells. For instance, on OSM-
postal polygons �� NYCtaxi points, during the spatial partitioning step (see the DAG and
data flow of GSJoin in Fig. 4): (1) Shuffled serialized data across the cluster by GEOSPARK

are 12.9GB (KDB), 13.2GB (QUAD) and 13.4GB (R) (2) The min, median and max shuf-
fled SRDD partition sizes are 4MB-6.4MB-8.8MB (KDB), 1MB-3.2MB-10.4MB (QUAD),
5MB-9.3MB-103MB (R). Obviously, the partition size of KBD-Tree partitioning is more
balanced. Quad-Tree method is not as balanced as KDB-Tree. R-Tree partitioning has an
overflow data partition, which is much larger than other partitions because R-Tree does not
usually cover the entire space.

According to the example given above, it makes sense that GEOSPARK KDB-Tree spa-
tial partitioning has the least local join time and R-Tree partitioning has the slowest local
join speed. Another factor that slows down R-Tree partitioning local join is the additional
data shuffle step resulting from removing duplicates among overlapped partitions (see
Section 5.3).

7.3.2 Comparing different systems

Magellan only supports OSMpostal �� NYCtaxi (polygons, points) using Z-Curve spatial
partitioning. Simba only supports distance join between points and points. In order to make
Simba work with OSMpostal �� NYCtaxi, we take the central point of each postal area

Author's personal copy

Geoinformatica

a) b)

Fig. 22 Range join query performance on datasets �� OSMpostal

in OSMpostal to produce a point dataset and use the average radius of OSMpostal poly-
gon as distance to run the distance join. By default, Simba uses R-Tree spatial partitioning
and builds local R-Tree indexes on the smaller dataset of the join query. SpatialHadoop
uses Quad-Tree spatial partitioning by default and it also builds Quad-Tree local index on
NYCtaxi, OSMobject and TIGERedges. GEOSPARK uses three different spatial partition-
ing methods, KDB-Tree (KDB), Quad-Tree (QUAD), and R-Tree (R) (these partitioning
methods are not GEOSPARK local indexes). Based on the performance of GEOSPARK range
query and KNN query, we build GEOSPARK Quad-Tree index on NYCtaxi, OSMobject and
TIGERedges by default. The experimental result is shown in Fig. 22.

In Fig. 22a, we compare GEOSPARK KDB-Tree partitioning join query with Quad-Tree
local index, Simba, Magellan and SpatialHadoop. As we can see from this figure, in compar-
ison with GEOSPARK, Simba is around 10 times slower (OSMpostal ��NYCtaxi), Magellan
is 15 times slower (OSMpostal �� NYCtaxi) and SpatialHadoop is more than 25 times
slower on all join query scenarios. The execution time contains all parts in a join query
including spatial partitioning, local index building and local join. A red cross means that
this join data type is not supported by this system.

Simba exhibits higher join time for the following reasons: (1) it uses R-Tree partition-
ing. As explained above, R-Tree partitioning is not as balanced as KDB-Tree partitioning.
(2) GEOSPARK customized serializer tells Spark how to serialize spatial data exactly. Simba
uses the default Spark kryo serializer which produces many unnecessary intermediate data
when serializing and shuffling spatial data. (3) Simba’s join algorithm shuffles lots of data
across the cluster. Based on our test, Simba shuffles around 70GB data while GEOSPARK

only shuffles around 13GB.
GEOSPARK outperforms Magellan because (1) Magellan uses Z-Curve spatial partition-

ing which leads to many overlapped partitions [16]. Using Z-Curve to index spatial objects
loses lots of spatial proximity information. Thus, this forces the system to put lots of spatial
objects that are impossible to intersect together. This wastes a significant amount of exe-
cution time and introduces a huge network data transfer. Based on our test, Magellan reads
623GB data through the network during the join query execution. (2) Magellan doesn’t sup-
port any spatial tree index like R-Tree or Quad-Tree. (3) Magellan doesn’t have customized
serializer like GEOSPARK.

Author's personal copy

Geoinformatica

SpatialHadoop is slow because SpatialHadoop has to put intermediate data on the disk
and this becomes even worse on spatial join because the spatial partitioning part in the join
query shuffles lots of data across the cluster which stresses memory as well as disk.

The peak memory utilization is given in Fig. 22b. GEOSPARK has the lowest peak mem-
ory and Simba has 1.7 times higher peak memory utilization. The peak memory used by
Simba is close to the upper limitation of our cluster, almost 400GB. That means if we
increase the input data size, Simba will crash. Magellan has 1.3 times higher peak mem-
ory utilization than GEOSPARK. SpatialHadoop still has the lowest peak memory which is
around 1 - 2 times less than GEOSPARK.

7.4 Performance of application use cases

This section evaluates the three use cases presented earlier in Section 6. We use the same
GEOSPARK source code in Figs. 9, 11 and 13 to test the performance: (1) App1: Region
heat map: we first run a range query on NYCtaxi to only keep Manhattan region pick-up
points then produce a map with OSM L6 zoom level [51] which has 4096 map tiles and 268
million pixels. (2) App2: Spatial aggregation: we perform a range join between NYCtaxi
points and NYC taxi zones (published along with [37], 264 taxi polygonal zones in NYC)
then count the taxi trip pickup points in each zone. (3) App3: Spatial co-location pattern
mining: we cache the spatial-partitioned Spatial RDD and its local index and iterate co-
location pattern mining 10 times. To be precise, we also write the applications using the
compared Hadoop-based and Spark-based systems and test their performance.

It is worth noting that SpatialHadoop is able to plot heat maps (used in App1) and range
join query (used in App2). SpatialHadoop uses Quad-Tree spatial partitioning by default and
it also builds Quad-Tree local index on NYCtaxi. It doesn’t support distance join query used
in App3. Magellan only supports App2 (NYC taxi zones �� NYCtaxi (polygons, points)
using Z-Curve spatial partitioning). It doesn’t support distance join query in App3. Simba
only supports distance join between points and points (used in App3) but it doesn’t support
NYC taxi zones �� NYCtaxi (polygons, points) (used in App2). By default, Simba uses
R-Tree spatial partitioning and builds local R-Tree indexes on the smaller dataset of the
join query. GEOSPARK uses KDB-Tree spatial partitioning and builds Quad-Tree index on
NYCtaxi. The experimental result is shown in Table 3. An X means that this join type is not
supported by this system.

As it turns out in Table 3, region heat map takes GEOSPARK 7 minutes because it needs
to repartition the pixels across the cluster following the uniform grids. Its peak memory is

Table 3 Performance of GEOSPARK applications (min is for execution time, GB is for peak memory)

Application GEOSPARK Simba Magellan SpatialHadoop

Region heat map 7 min X X 42min

193GB X X 65GB

Spatial aggregation 17 min X 20min 41min

234GB X 307GB 105GB

Spatial coLocation 1st iter., 8.5min Crashed X X

10 iter., 10.5min Crashed X X

execution, 240GB

cached, 101GB

Author's personal copy

Geoinformatica

dominated by the range query part because the repartitioning part only shuffles the Man-
hattan region data which is smaller than the input Spatial RDD. SpatialHadoop runs 4
times slower than GEOSPARK because it puts intermediate on disk. However, its memory
utilization is much less than GEOSPARK.

Regarding App2 spatial aggregation using NYCtaxizone �� NYCtaxi, the execution time
of GEOSPARK is 1̃7 minutes, which is 2 times longer than that on OSMpostal �� NYCtaxi
because there are 10 times more taxi zones than OSMpostal postal areas in New York City.
In addition, spatial aggregation executes a CountBy operation to count the pickup point per
taxi zone and this leads to data shuffle across the cluster. GEOSPARK is faster than Magellan
because of KDB-Tree partitioning and Quad-Tree index. Its memory consumption is lower
than Magellan due to the help of GEOSPARK customized serializer. SpatialHadoop is still
around 2 times slower than other systems but its peak memory is lower.

As depicted in Table 3, GEOSPARK and Simba support App3 Co-location pattern mining
because they support distance joins. However, Simba takes a very long time to run and even-
tually crashes because of memory overflow in distance join query. GEOSPARK is the only
system can properly handle this application and finish it in a timely manner. Recalled that we
run 10 iterations using GEOSPARK in this application. The first iteration of the co-location
pattern mining algorithm takes 8.5 minutes and all 9 others take 2.3 minutes. The first iter-
ation takes 30 times more time than the other iterations. This happens because GEOSPARK

caches the spatial RDD and the corresponding local indexes. Hence, the upcoming iteration
directly reads data from the memory cache, which saves a lot of time.

8 Conclusion and future work

The paper describes the anatomy of GEOSPARK, an in-memory cluster computing frame-
work for processing large-scale spatial data. GEOSPARK provides Spatial SQL and Spatial
RDD APIs for Apache Spark programmers to easily develop spatial analysis applica-
tions. Moreover, the system provides native support for spatial data partitioning, indexing,
query processing, data visualization in Apache Spark to efficiently analyze spatial data
at scale. Extensive experiments show that GEOSPARK outperforms Spark-based systems
such as Simba and Magellan up to one order of magnitude and Hadoop-based system
such as SpatialHadoop up to two orders of magnitude. The release of GEOSPARK stimu-
lated the database community to work on spatial extensions to Spark. We expect that more
researchers and practitioners will contribute to GEOSPARK code base to support new spatial
data analysis applications.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. NRC (2001) Committee on the science of climate change, climate change science: an analysis of some
key questions, National Academies Press, Washington

2. Zeng N, Dickinson RE, Zeng X (1996) Climatic impact of amazon Deforestation?A mechanistic model
study. Journal of Climate 9:859–883

3. Chen C, Burton M, Greenberger E, Dmitrieva J (1999) Population migration and the variation of
dopamine D4 receptor (DRD4) allele frequencies around the globe. Evol Hum Behav 20(5):309–324

Author's personal copy

Geoinformatica

4. Woodworth PL, Menéndez M, Gehrels WR (2011) Evidence for century-timescale acceleration in mean
sea levels and for recent changes in extreme sea levels. Surv Geophys 32(4-5):603–618

5. Dhar S, Varshney U (2011) Challenges and business models for mobile location-based services and
advertising. Commun ACM 54(5):121–128

6. PostGIS Postgis. http://postgis.net/
7. Open Geospatial Consortium. http://www.opengeospatial.org/
8. Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, Saltz JH (2013) Hadoop-GIS: a high performance spatial

data warehousing system over MapReduce. Proc Int Conf on Very Large Data Bases, VLDB 6(11):1009–
1020

9. Eldawy A, Mokbel MF (2015) Spatialhadoop: a mapreduce framework for spatial data. In: Proceedings
of the IEEE International Conference on Data Engineering, ICDE, pp 1352–1363

10. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, Franklin MJ, Shenker S, Stoica I
(2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In:
Proceedings of the USENIX symposium on Networked Systems Design and Implementation, NSDI,
pp 15–28

11. Ashworth M (2016) Information technology – database languages – sql multimedia and application
packages – part 3: Spatial, standard, International organization for standardization, Geneva, Switzerland

12. Pagel B-U, Six H-W, Toben H, Widmayer P (1993) Towards an analysis of range query performance
in spatial data structures. In: Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of Database Systems PODS ’93

13. Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: Proceedings of the ACM international
conference on management of data, SIGMOD, pp 259–270

14. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM
international conference on management of data, SIGMOD, pp 47–57

15. Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv (CSUR)
16(2):187–260

16. Eldawy A, Alarabi L, Mokbel MF (2015) Spatial partitioning techniques in spatial hadoop. Proc Int Conf
on Very Large Data Bases, VLDB 8(12):1602–1605

17. Eldawy A, Mokbel MF, Jonathan C (2016) Hadoopviz: A mapreduce framework for extensible visual-
ization of big spatial data. In: Proceedings of the IEEE International Conference on Data Engineering,
ICDE, pp 601–612

18. Eldawy A (2014) Pigeon: a spatial mapreduce language. In: IEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pp 1242–1245

19. Lu J, Guting RH (2012) Parallel secondo: boosting database engines with Hadoop. In: International
conference on parallel and distributed systems, pp 738 –743

20. Vo H, Aji A, Wang F (2014) SATO: a spatial data partitioning framework for scalable query processing.
In: Proceedings of the ACM international conference on advances in geographic information systems,
ACM SIGSPATIAL, pp 545–548

21. Thusoo A, Sen JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R (2009) Hive: a
warehousing solution over a Map-Reduce framework. In: Proceedings of the International Conference
on Very Large Data Bases, VLDB, pp 1626–1629

22. Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Franklin MJ, Ghodsi
A, Zaharia M (2015) Spark SQL: relational data processing in spark. In: Proceedings of the ACM
international conference on management of data, SIGMOD, pp 1383–1394

23. Xie D, Li F, Yao B, Li G, Zhou L, Guo M (2016) Simba: efficient in-memory spatial analytics. In:
Proceedings of the ACM international conference on management of data, SIGMOD

24. Sriharsha R Geospatial analytics using spark. https://github.com/harsha2010/magellan
25. You S, Zhang J, Gruenwald L (2015) Large-scale spatial join query processing in cloud. In: Proceedings

of the IEEE International Conference on Data Engineering Workshop, ICDEW, pp 34–41
26. Hughes NJ, Annex A, Eichelberger CN, Fox A, Hulbert A, Ronquest M (2015) Geomesa: a distributed

architecture for spatio-temporal fusion. In: SPIE defense+ security, pp 94730F–94730F, International
society for optics and photonics

27. Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta
informatica 4(1):1–9

28. Herring JR (2006) Opengis implementation specification for geographic information-simple feature
access-part 2: Sql option, Open Geospatial Consortium Inc

29. Apache Accumulo. https://accumulo.apache.org/
30. Hunt P, Konar M, Junqueira FP, Reed B (2010) Zookeeper: Wait-free coordination for internet-scale

systems. In: USENIX annual technical conference, Boston, MA, USA June 23-25

Author's personal copy

http://postgis.net/
http://www.opengeospatial.org/
https://github.com/harsha2010/magellan
https://accumulo.apache.org/

Geoinformatica

31. Butler H, Daly M, Doyle A, Gillies S, Schaub T, Schmidt C (2014) Geojson, Electronic. http://geojson.
org

32. Perry M, Herring J (2012) Ogc geosparql-a geographic query language for rdf data, OGC Implementa-
tion Standard Sept

33. Group H et al (2014) Hierarchical data format version 5
34. ESRI E (1998) Shapefile technical description, an ESRI white paper
35. Yu J, Sarwat M (2016) Two birds, one stone: A fast, yet lightweight, indexing scheme for modern

database systems. Proc Int Conf on Very Large Data Bases, VLDB 10(4):385–396
36. Yu J, Sarwat M (2017) Indexing the pickup and drop-off locations of NYC taxi trips in postgresql

- lessons from the road. In: Proceedings of the international symposium on advances in spatial and
temporal databases, SSTD, pp 145–162

37. Taxi NYC, Commission L Nyc tlc trip data. http://www.nyc.gov/html/tlc/html/about/trip record data.
shtml

38. Robinson JT (1981) The k-d-b-tree: a search structure for large multidimensional dynamic indexes. In:
Proceedings of the 1981 ACM SIGMOD international conference on management of data, Ann Arbor,
Michigan, April 29 - May 1, 1981, pp 10–18

39. Opyrchal L, Prakash A (1999) Efficient object serialization in java. In: Proceedings of the 19th IEEE
international conference on distributed computing systems workshops on electronic commerce and web-
based applications/middleware, 1999, IEEE, pp 96–101

40. Cao P, Wang Z (2004) Efficient top-k query calculation in distributed networks. In: Proceedings of the
twenty-third annual ACM symposium on principles of distributed computing, PODC 2004, St. John’s,
Newfoundland, Canada, July 25-28, 2004, pp 206–215

41. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of the ACM
international conference on management of data, SIGMOD, pp 71–79

42. Zhou X, Abel DJ, Truffet D (1998) Data partitioning for parallel spatial join processing. Geoinformatica
2(2):175–204

43. Luo G, Naughton JF, Ellmann CJ (2002) A non-blocking parallel spatial join algorithm
44. Zhang S, Han J, Liu Z, Wang K, Xu Z (2009) SJMR: parallelizing spatial join with mapreduce on

clusters. In: Proceedings of the 2009 IEEE international conference on cluster computing, August 31 -
September 4, 2009, New Orleans, Louisiana, USA, pp 1–8

45. Dittrich J, Seeger B (2000) Data redundancy and duplicate detection in spatial join processing. In: Pro-
ceedings of the 16th international conference on data engineering, San Diego, California, USA, February
28 - March 3, 2000, pp 535–546

46. Consortium OG (2010) Opengis web map tile service implementation standard, tech. rep., Tech. Rep.
OGC 07-057r7. In: Masó J, Pomakis K, Julià N (eds) Open Geospatial Consortium. Available at http://
portal.opengeospatial.org/files

47. Ripley BD (2005) Spatial statistics, vol 575, Wiley, New York
48. Haklay MM, Weber P (2008) Openstreetmap: User-generated street maps. IEEE Pervasive Computing

7(4):12–18
49. TIGER data. https://www.census.gov/geo/maps-data/data/tiger.html
50. OpenStreetMap. http://www.openstreetmap.org/
51. OpenStreetMap. Open street map zoom levels. http://wiki.openstreetmap.org/wiki/Zoom levels

Jia Yu is a PhD student at the Computer Science department,
School of Computing, Informatics, and Decision Systems Engineer-
ing, Arizona State University, where he also is a member of Data
Systems Lab. His research interests focus on database management
systems (DBMS), spatialtemporal databases, distributed data com-
putation/storage engine, data indexing, query optimization and data
visualization. Jia is the main contributor of several open-sourced
projects such as GeoSpark system and Hippo lightweight index.

Author's personal copy

http://geojson.org
http://geojson.org
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://portal. opengeospatial.org/files
http://portal. opengeospatial.org/files
https://www.census.gov/geo/maps-data/data/tiger.html
http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Zoom_levels

Geoinformatica

Zongsi Zhang is a data engineer at Grab Ltd, Singapore. He obtained
his Master degree in Computer Science from School of Computing,
Informatics, and Decision Systems Engineering, Arizona State Uni-
versity. He used to be a member of Data Systems Lab. His works
focus on high performance & distributed computation system and
automation of data preprocess. Zongsi has some vital contributions to
GeoSpark System.

Mohamed Sarwat is an Assistant Professor of Computer Science
and the director of the Data Systems (DataSys) lab at Arizona State
University (ASU). Mohamed is also an affiliate member of the Cen-
ter for Assured and Scalable Data Engineering (CASCADE). Before
joining ASU in August 2014, Mohamed obtained his MSc and PhD
degrees in computer science from the University of Minnesota in
2011 and 2014, respectively. His research interest lies in the broad
area of data management systems. Mohamed is a recipient of the Uni-
versity of Minnesota Doctoral Dissertation Fellowship. His research
work has been recognized by the “Best Research Paper Award” in
the IEEE 16th International Conference on Mobile Data Management
(MDM 2015), the “Best Research Paper Award” in the 12th Interna-
tional Symposium on Spatial and Temporal Databases (SSTD 2011),
and a ?Best of Conference? citation in the IEEE 28th International
Conference on Data Engineering (ICDE 2012).

Author's personal copy

	Spatial data management in apache spark: the GeoSpark perspective and beyond
	Abstract
	Abstract
	Introduction
	Background and related work
	Spatial database operations
	Spatial Range query
	Spatial join
	Spatial K nearest neighbors (KNN) query
	Spatial indexing

	Spatial data processing in the Hadoop ecosystem
	Apache spark and spark-based spatial data processing systems
	Limitations of Spark-based systems

	System overview
	Spatial RDD (SRDD) layer
	Heterogeneous data sources
	Complex geometrical shapes
	Spatial partitioning
	Spatial index support

	SRDD spatial objects support
	SRDD built-in geometrical library
	DatasetBoundary (SQL: ST_Envelope_Aggr)
	ReferenceSystemTransform (SQL: ST_Transform)

	SRDD partitioning
	SRDD indexing
	Build local indexes
	Query local indexes
	Persist local indexes

	SRDD customized serializer
	Serialization phase
	De-serialization phase

	Spatial query processing layer
	Processing spatial range and distance queries in spark
	SQL API
	Algorithm
	DAG and iterative spatial data mining

	Spatial K nearest neighbors (KNN) query
	SQL API:
	Algorithm
	DAG and iterative spatial data mining

	Processing spatial join queries in spark
	API
	GSJoin algorithm
	Broadcast join algorithm
	Distance join algorithm
	Spark DAG

	Spatial SQL query optimization
	Extend SparkSQL catalyst optimizer
	Analysis
	Logical optimization
	Physical planning
	Code generation

	Heuristic rules for logical plans
	Predicate pushdown
	Predicate merging
	Intersection query rewrite

	Cost-based strategies for physical plans
	GeoSpark statistics
	Index scan selection
	Spatial join algorithm selection

	Application use cases
	Application 1: region heat map
	Application 2: spatial aggregation
	Application 3: spatial co-location pattern mining

	Experiments
	Datasets
	Workload
	Cluster settings
	Performance metrics

	Performance of range query
	Impact of GeoSpark local indexing
	Comparing different systems

	Performance of K nearest neighbors (KNN) query
	Performance of range join query
	Impact of spatial partitioning
	Comparing different systems

	Performance of application use cases

	Conclusion and future work
	References

