
A Demonstration of GeoSpark: A Cluster Computing
Framework for Processing Big Spatial Data

Jia Yu
School of Computing, Informatics,
and Decision Systems Engineering

Arizona State University
Tempe, Arizona 85281
Email: jiayu2@asu.edu

Jinxuan Wu
School of Computing, Informatics,
and Decision Systems Engineering

Arizona State University
Tempe, Arizona 85281

Email: jinxuanw@asu.edu

Mohamed Sarwat
School of Computing, Informatics,
and Decision Systems Engineering

Arizona State University
Tempe, Arizona 85281
Email: msarwat@asu.edu

Abstract—This paper demonstrates GEOSPARK a cluster
computing framework for developing and processing large-scale
spatial data analytics programs. GEOSPARK consists of three
main layers: Apache Spark Layer, Spatial RDD Layer and Spatial
Query Processing Layer. Apache Spark Layer provides basic
Apache Spark functionalities as regular RDD operations. Spatial
RDD Layer consists of three novel Spatial Resilient Distributed
Datasets (SRDDs) which extend regular Apache Spark RDD to
support geometrical and spatial objects with data partitioning
and indexing. Spatial Query Processing Layer executes spatial
queries (e.g., Spatial Join) on SRDDs. The dynamic status of
SRDDs and spatial operations are visualized by GEOSPARK mon-
itoring map interface. We demonstrate GEOSPARK using three
spatial analytics applications (spatial aggregation, autocorrelation
and co-location) to show how users can easily define their spatial
analytics tasks and efficiently process such tasks on large-scale
spatial data at interactive performance.

I. INTRODUCTION

Spatial data includes but is not limited to: weather maps,
geological maps, socioeconomic data, vegetation indices, and
more. Moreover, novel technology allows hundreds of millions
of users to use their mobile devices to access their health-
care information and bank accounts, interact with friends,
buy stuff online, search interesting places to visit on-the-
go, ask for driving directions, and more. In consequence,
everything we do on the mobile internet leaves breadcrumbs
of spatial digital traces, e.g., geo-tagged tweets, venue check-
ins. Making sense of such spatial data will be beneficial for
several applications that may transform science and society
– For example: (1) Socio-Economic Analysis: that includes
for example climate change analysis, study of deforestation,
population migration, and variation in sea levels, (2) Urban
Planning: assisting government in city/regional planning, road
network design, and transportation / traffic engineering, and
(3) Commerce and Advertisement: e.g., point-of-interest (POI)
recommendation services. The aforementioned applications
need a powerful data management platform to handle the large
volume of spatial data such applications deal with. Challenges
to building such platform are as follows:

Challenge I: System Scalability. The massive-scale
of available spatial data hinders making sense of it us-
ing traditional spatial database management systems.
Moreover, large-scale spatial data, besides its tremen-
dous storage footprint, may be extremely difficult to

manage and maintain. The underlying database system
must be able to digest Petabytes of spatial data and
effectively analyze it.

Challenge II: Fast Analytics. In spatial data analytics
applications, users will not tolerate delays introduced
by the underlying spatial database system. Instead, the
user needs to see useful information quickly. Hence,
the underlying spatial data processing system must
figure out effective ways to execute spatial analytics
in parallel.

Existing spatial database systems extend relational database
systems with new data types, functions, operators, and index
structures to handle spatial operations based on the Open
Geospatial Consortium. Even though such systems sort of
provide full support for spatial data storage and access, they
suffer from a scalability issue. Based upon a relational database
system, such systems are not scalable enough to handle large-
scale analytics over big spatial data. Recent works (e.g., [1],
[2]) extend the Hadoop ecosystem to perform spatial analytics
at scale. The Hadoop-based approach indeed achieves high
scalability. However, these systems though exhibit excellent
performance in batch-processing jobs, they show poor perfor-
mance handling applications that require fast data analysis.
Apache Spark [3], on the other hand, is an in-memory cluster
computing system. Spark provides a novel data abstraction
called resilient distributed datasets (RDDs) [4] that are collec-
tions of objects partitioned across a cluster of machines. Each
RDD is built using parallelized transformations (filter, join or
groupBy) that could be traced back to recover the RDD data.
In memory RDDs allow Spark to outperform existing models
(MapReduce) by up to two orders of magnitude. Unfortunately,
Spark does not provide native support for spatial data and
spatial operations. Hence, users need to perform the tedious
task of programming their own spatial data processing jobs on
top of Spark.

This paper demonstrates GEOSPARK 1 [5] an in-memory
cluster computing system for processing large-scale spatial
data. GEOSPARK extends Apache Spark to support spatial data
types and operations. In other words, the system extends the
resilient distributed datasets (RDDs) concept to support spatial
data. This problem is quite challenging due to the fact that
(1) spatial data may be quite complex, e.g., rivers’ and cities’

1GeoSpark Github repository: https://github.com/Sarwat/GeoSpark

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

Fig. 1: GeoSpark architecture

geometrical boundaries, (2) spatial (and geometric) operations
(e.g., Overlap, MinimumBoundingRectangle, Union) cannot be
easily and efficiently expressed using regular RDD transforma-
tions and actions. GEOSPARK extends RDDs to form Spatial
RDDs (SRDDs) and efficiently partitions SRDD data elements
across machines and introduces novel parallelized spatial (geo-
metric operations that follows the Open Geosptial Consortium
(OGC) [6] standard) transformations and actions (for SRDD)
that provide a more intuitive interface for users to write spatial
data analytics programs. Moreover, GEOSPARK extends the
SRDD layer to execute spatial queries (e.g., Range query,
KNN query, and Join query) on large-scale spatial datasets.
The dynamic status of SRDDs and associated queries are vi-
sualized by GEOSPARK monitoring interface throughout each
entire spatial analytics process. We demonstrate GEOSPARK

using three applications: (1) Application 1 uses GEOSPARK

to calculate geospatial autocorrelation in a spatial dataset,
(2) Application 2 leverages the system to generate a heat map
of the San-Francisco trees population, and (3) Application 3
executes a spatial co-location pattern mining with the help of
GEOSPARK .

II. GEOSPARK ARCHITECTURE

As depicted in Figure 1, GEOSPARK consists of three
main layers: (1) Apache Spark Layer: that consists of regular
operations that are natively supported by Apache Spark. These
native functions are responsible for loading / saving data from
/ to persistent storage (e.g., stored on local disk or Hadoop
file system HDFS). (2) Spatial Resilient Distributed Dataset
(SRDD) Layer (Section II-A). (3) Spatial Query Processing
Layer (Section II-B).

A. Spatial RDD (SRDD) Layer

This layer extends Spark with spatial RDDs (SRDDs)
that efficiently partition SRDD data elements across machines
and introduces novel parallelized spatial transformations and
actions (for SRDD) that provide a more intuitive interface for

Fig. 2: SRDD partitioning

users to write spatial data analytics programs. The SRDD layer
consists of three new RDDs: PointRDD, RectangleRDD and
PolygonRDD. One useful Geometrical operations library is
also provided for every spatial RDD.

Spatial Objects Support. GEOSPARK supports various
spatial data input format (e.g., Comma Separated Value,
Tab Separated Value and Well-Known Text). Each type of
spatial objects is stored in a SRDD, PointRDD, Rectan-
gleRDD or PolygonRDD. GEOSPARK provides a set of ge-
ometrical operations which is called Geometrical Operations
Library. This library natively supports geometrical opera-
tions. For example, Overlap(): Finds all of the inter-
nal objects which are intersected with others in geometry;
MinimumBoundingRectangle(): Finds the minimum
bounding rectangles for each object in a Spatial RDD or return
a large minimum bounding rectangle which contains all of
the internal objects in a Spatial RDD; Union(): Returns the
union polygon of all polygons in this RDD.

SRDD Partitioning. GEOSPARK automatically partitions
all loaded Spatial RDDs by creating one global grid file for
data partitioning. The main idea for assigning each element in
a Spatial RDD to the same 2-Dimensional spatial grid space
is as follows: Firstly, split the spatial space into a number of
non-equal grid cells which compose a global grid file. This
global grid file has load balanced grids according to pre-
sampling techniques. Then traverse each element in the SRDD
and assign this element to a grid cell if the element overlaps
with this grid cell. If one element intersects with two or more
grid cells, then duplicate this element and assign different grid
IDs to the copies of this element. Figure 2 depicts tweets in
the U.S. at a particular moment, tweets and states are assigned
to respective grid cells.

SRDD Indexing. Spatial indexes like Quad-Tree and R-
Tree are provided in Spatial IndexRDDs which inherit from
Spatial RDDs. Users are able to initialize a Spatial IndexRDD.
Moreover, GEOSPARK adaptively decides whether a local
spatial index should be created for a certain Spatial IndexRDD
partition based on a tradeoff between the indexing overhead
(memory and time) on one-hand and the query selectivity as
well as the number of spatial objects on the other hand.

2

B. Spatial Query Processing Layer

This layer supports spatial queries (e.g., Range query and
Join query) for large-scale spatial datasets. After geometrical
objects are stored and processed in the Spatial RDD layer, user
may invoke a spatial query provided in Spatial Query Process-
ing Layer. GEOSPARK processes such query and returns the
final results to the user. GEOSPARK execution model imple-
ments the algorithms proposed by [7] and [8]. To accelerate a
spatial query, GEOSPARK leverages the grid partitioned Spatial
RDDs, spatial indexing, the fast in-memory computation and
DAG scheduler of Apache Spark to parallelize the query
execution.

Spatial Range Query. GEOSPARK executes the spatial
range query algorithm following the execution model: Load
target dataset, partition data, create a spatial index on each
SRDD partition if necessary, broadcast the query window
to each SRDD partition, check the spatial predicate in each
partition, and remove spatial objects duplicates that existed
due to the data partitioning phase.

Spatial Join Query. GEOSPARK executes the parallel
spatial join query following the execution model. GeoSpark
first partitions the data from the two input SRDDs as well
as creates local spatial indexes (if required) for the SRDD
which is being queried. Then it joins the two datasets by their
keys which are grid IDs. For the spatial objects (from the
two SRDDs) that have the same grid ID, GeoSpark calculates
their spatial relations. If two elements from two SRDDS are
overlapped, they are kept in the final results. The algorithm
continues to group the results for each rectangle. The grouped
results are in the following format: Rectangle, Point, Point,
... Finally, the algorithm removes the duplicated points and
returns the result to other operations or saves the final result
to disk.

Spatial KNN Query. To process a Spatial KNN query,
GEOSPARK uses a heap based top-k algorithm[9], which
contains two phases: selection and merge. It takes a partitioned
SRDD, a point and a number as inputs. To calculate
the nearest objects around point , in the selection phase,
for each SRDD partition GEOSPARK calculates the distances
between each object to the given point , then maintains
a local heap by adding or removing elements based on the
distances. This heap contains the nearest objects around the
given point . For IndexedSRDD, the system can utilize the
local indexes to reduce the query time. After the selection
phase, GEOSPARK merges results from each partition, keeps
the nearest elements that have the shortest distances to
and outputs the result.

III. DEMONSTRATION SCENARIOS

We demonstrate GEOSPARK using three spatial appli-
cations which are described below. GEOSPARK provides a
monitoring map interface for system users to visualize and
monitor the spatial program dynamically. A screenshot of this
tool is provided in Figure 3. The interface allows users to
execute Scala code interactively through an integrated Scale
shell. Meanwhile, a map on-top of the shell visualizes the
SRDDs generated by Scala code. Throughout the entire spatial
analytics process, all generated SRDDs are listed on the left
side pane of the user interface. When the user clicks on any

SRDD partition (if it is still alive) on the left pane, she obtains
more detailed information from a nested menu such as the
data size in this partition, physical machine IP address, CPU
and memory utilization. Besides the description of SRDDs,
the tool also provides the status of a running spatial program
in a progress bar format. By browsing GEOSPARK Monitoring
Tool, users can interactively monitor the run time of their entire
spatial analytics program.

A. Application 1: Spatial Autocorrelation

Spatial autocorrelation studies whether neighbor spatial
data points might have correlations in some non-spatial at-
tributes. Moran’s I and Geary’s C are two common coeffi-
cients in spatial autocorrelation. Based on them, analysts can
determine whether these objects influence each other. These
efficients are defined by two specific formulas correspondingly.
An important part of these formulas is to find the spatial
adjacent matrix. In this matrix, each tuples stands for whether
two objects, such as points, rectangles or polygons, are within
a specified distance.

An application programmer may leverage GEOSPARK

SpatialJoinQuery() to calculate the spatial adjacent
matrix. Assume one dataset is composed of millions of point
objects. The process to find the global adjacent matrix in
GEOSPARK is as as follows: (1) Call GEOSPARK PointRDD
initialization method to store the dataset in memory. Data
partitioning and indexing are also completed by GEOSPARK

at this stage. (2) Call GEOSPARK SpatialJoinQuery()
in PointRDD. The first parameter is the query point set itself
and the second one is the specified distance. (3) Use a new
instance of Spatial PairRDD to store the result of Step (2).
Step (2) will return the whole point set which has a new
column specify the neighbors of each tuple within the distance.
The expected schema is like this: Point coordinates (longitude,
latitude), neighbor 1 coordinates (longitude, latitude), neighbor
2 coordinates (longitude, latitude), ... (4) Call persistence
method in GEOSPARK to persist the resulting PointRDD.

B. Application 2: Spatial Aggregation

Assume an environmental scientist – studying the relation-
ship between air quality and trees – would like to explore the
trees population in San Francisco. A query may leverage the
SpatialRangeQuery() provided by GEOSPARK to just
return all trees in San Francisco. Alternatively, a heat map
(spatial aggregate) that shows the distribution of trees in San
Francisco may be also helpful. This spatial aggregate query
(i.e., heat map) needs to count all trees at every single region
over the map.

In the heat map case, in terms of spatial queries, the
heat map is a spatial join in which the target set is the tree
map in San Francisco and the query area set is a set of
San Francisco regions. The region number depends on the
display resolution, or granularity, in the heat map. One proper
GEOSPARK program is as follows: (3) Use a Spatial PairRDD
to store the result of Step (2) which is the count for each
polygon. The Spatial PairRDD follows the schema like this:
(Polygon, count) such that Polygon represents the boundaries
of the spatial region. (4) Call persistence method in Spark to
persist the result PolygonRDD.

3

Fig. 3: GEOSPARK Monitoring Tool

C. Application 3: Spatial Co-location

Spatial co-location is defined as two or more species are of-
ten located in a neighborhood relationship. The determination
of this co-location pattern may benefit many further scientific
researches. Biologists may find symbiotic relationships, mobile
carriers can provide proper plans based users’ co-location, and
advertising agencies are able to place directed advertisements
at the center of co-located populations. For instance, one
existing co-location pattern is that one kind of tigers always
live within a certain distance from one kind of rabbits. Thus
we may infer one possible fact that these tigers feed on these
rabbits.

Some co-efficients are applied to determine the co-location
relationship. Ripley’s K function [10] is the most common one
in real life. It usually executes numerous times iteratively and
finds the ideal distance. The calculation of K function also
needs the adjacent matrix between two type of objects. As we
mentioned in spatial autocorrelation analysis, seeking adjacent
matrix may leverage GEOSPARK SpatialJoinQuery().
Programmer are able to follow the same procedure depicted in
Spatial Autocorrelation.

Furthermore, spatial co-location, different from the previ-
ous basic spatial applications, is able to maximize the in mem-
ory computation goodness of GEOSPARK . Under GEOSPARK

framework, users only need to spend time on loading data,
partitioning data, and constructing indexes in the first iteration
and then GEOSPARK automatically caches these intermediate
data in memory. In the next numerous iterations, users are

able to directly keep mining the co-location pattern using the
cache in memory instead of loading and pre-processing data
from scratch.

REFERENCES

[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz,
“Hadoop-GIS: A High Performance Spatial Data Warehousing System
over MapReduce,” Proceedings of the VLDB Endowment, PVLDB,
vol. 6, no. 11, pp. 1009–1020, 2013.

[2] A. Eldawy and M. F. Mokbel, “A demonstration of spatialhadoop: An
efficient mapreduce framework for spatial data,” Proceedings of the
VLDB Endowment, PVLDB, vol. 6, no. 12, pp. 1230–1233, 2013.

[3] “Spark,” https://spark.apache.org.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation, NSDI, 2012, pp. 15–28.

[5] J. Yu, J. Wu, and M. Sarwat, “Geosaprk: A cluster computing frame-
work for processing large scale spatial data,” in Proceedings of ACM
SIGSPATIAL GIS, 2015.

[6] “Open Geospatial Consortium,” http://www.opengeospatial.org/.

[7] G. Luo, J. F. Naughton, and C. J. Ellmann, “A non-blocking parallel
spatial join algorithm,” in Data Engineering, 2002. Proceedings. 18th
International Conference on. IEEE, 2002, pp. 697–705.

[8] X. Zhou, D. J. Abel, and D. Truffet, “Data partitioning for parallel
spatial join processing,” Geoinformatica, vol. 2, no. 2, pp. 175–204,
1998.

[9] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in ACM sigmod record, vol. 24, no. 2. ACM, 1995, pp. 71–79.

[10] B. D. Ripley, Spatial statistics. John Wiley & Sons, 2005, vol. 575.

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
