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FOREWORD 

The 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of 

COVID-19 workshop (COVID’2020) will focus on all aspects of modeling, simulating, mining, and 

understanding the spatial processes and patterns of the spread of COVID-19 and other infectious diseases. 

This cross-disciplinary workshop is a forum to bring together researchers in the SIGSPATIAL community 

as well as researchers in epidemiology. Also, this workshop is of interest to everyone who works with 

infectious disease data and models (not necessarily COVID19).  

This year we received twelve submissions, of which we selected eight quality papers for final publication 

for an acceptance rate of 66%. Every paper was reviewed by exactly three program committee members. 

Despite the high acceptance rate, the review process was highly selective. We accepted only papers of high 

quality that received an average rating from reviewers of at least +1.0. Among the eight accepted papers, 

reviewers recommended 2 Strong Accepts (+3), 11 Accepts (+2), 7 Weak Accepts (+1), 3 Neutrals (0), and 

one Weak Reject (-1) for an average rating of 1.42 among accepted papers.  

The accepted papers cover a range of topics for modeling and understanding COVID-19. COVID’2020 will 

feature two keynote talks by Dr. Nicholas Reich titled “Transmission Dynamics of SARS-CoV-2: Modeling, 

Inference and Projection” and Dr. Jeffrey Shaman titled “A critical evaluation of COVID-19 pandemic 

forecasts”. This workshop will also feature eight invited talks featuring research included in the 

SIGSPATIAL Special Issues: Modeling and Understanding COVID-19 Part I and Part II.  

We would like to extend our sincerest thanks to the participants, the invited speakers, the keynotes, the 

authors, and the program committee whose reviewing efforts are important for ensuring the quality of the 

accepted papers. 

 

 

 

 

 

 

 

 

 

 

 

Taylor Anderson, George Mason University, VA, USA 

Jia Yu, Washington State University, WA, USA 

Andreas Züfle, George Mason University, VA, USA  

https://www.sigspatial.org/2020/3/volume-12-number-1/
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ABSTRACT
Awide range of approaches have been applied to manage the spread
of global pandemic events such as COVID-19, which have met with
varying degrees of success. Given the large-scale social and eco-
nomic impact coupled with the increasing time span of the pan-
demic, it is important to not only manage the spread of the disease
but also put extra efforts on measures that expedite resumption
of social and economic life. It is therefore important to identify
situations that carry high risk, and act early whenever such situa-
tions are identified. While a large number of mobile applications
have been developed, they are aimed at obtaining information that
can be used for contact tracing, but not at estimating the risk of
social situations. In this paper, we introduce an infection risk score
that provides an estimate of the infection risk arising from human
contacts. Using a real-world human contact dataset, we show that
the proposed risk score can provide a realistic estimate of the level
of risk in the population. We also describe how the proposed in-
fection risk score can be implemented on smartphones. Finally, we
identify representative use cases that can leverage the risk score to
minimize infection propagation.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous andmobile computing;Mobile computing; •Networks
→ Peer-to-peer protocols.

KEYWORDS
Infection risk score, Contact Tracing, Mobile Computing, Internet
of Things, Mobile Health
ACM Reference Format:
Rachit Agarwal and Abhik Banerjee. 2020. Infection Risk Score: Identifying
the risk of infection propagation based on human contact. In 1st ACM
SIGSPATIAL International Workshop on Modeling and Understanding the
Spread of COVID-19 (COVID-19), November 3, 2020, Seattle, WA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3423459.3430754

1 INTRODUCTION
21st century has already been witness to multiple pandemics in
the first two decades, with the biggest being COVID-19 caused by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
COVID-19, November 3, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8168-0/20/11. . . $15.00
https://doi.org/10.1145/3423459.3430754

the SARS-CoV-2 virus. The unprecedented spread of the COVID-19
has led to global efforts by governments to contain the pandemic
and to limit the impact of the virus on human society. As with
any other infectious disease, the efforts to contain the virus largely
focus on (i) minimizing human-to-human contact by enforcing
people to maintain a certain distance with others (also known as
social distancing), (ii) minimizing economic activity (also known
as lockdown) for a certain period in geographical regions, such
as cities, states or even entire countries, and (iii) by performing
contact tracing, which involves tracking the disease spread by
identifying the contacts of the confirmed cases. However, these
efforts have been met with varying degrees of success, and the
authorities have been trying to use technology as much as possible
to elevate their efforts [13].

With the rise of the Internet of Things (IoT) andmobile health [33]
(also referred to asmHealth), there has been a growth in the number
of possibilities related to not only understanding the environment
but also detecting diseases early.With regards to the COVID-19 pan-
demic in particular, governments around the world have looked to
leverage the use of smartphone applications for limiting the spread
of the disease, given the ubiquity of smartphone usage. While many
of these applications focus on providing up-to-date information
about the spread of the disease, other applications aim to notify
users in real-time when they come in contact with an infected
person [11]. These infection tracking applications use a variety of
sensors embedded in a smartphone to help detect the transmission
in real-time. A common type of sensor used is Bluetooth Low En-
ergy (BLE), which can be used for proximity detection. Multiple
applications that leverage BLE for the purpose of monitoring the
growth of the COVID-19 pandemic have been introduced in vari-
ous countries. In India, the Aarogya-Setu Application [20] informs
how many infected people are within a certain distance of a per-
son using the application by matching with national database of
the infected people. In Australia, the COVIDSafe application [2]
provide notifications to the users if their contact is detected with
a confirmed infected person. Similar applications have been de-
veloped by the governments of many other countries. Further, a
collaboration between Apple Inc. and Google has led to the devel-
opment of an Exposure API that enables developers to build various
applications using which application users can know if they came
into contact with other infected people [6]. Apart from smartphone
applications, other types of technologies are also used to help in the
cause of containing pandemic. These include the use of SwipeSense
technology to track use of medical equipment and to track whether
hospital staff wash their hands regularly1.

1https://www.cnbc.com/2020/08/02/hospitals-tracking-covid-19-with-badge-sensors-
swipesense-technology.html
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Despite the technological innovations and advancements, the
use of applications, such as those described above, and technolo-
gies for managing and controlling the spread of the infection is
challenging due to multiple reasons. Firstly, a person carrying the
disease may not show any symptoms for a long period (e.g. when
the infection is in the incubation period). As a result, any close
contacts with other people would not be detected as being risky by
infection tracking applications, and hence would not help in con-
taining the spread of the infection. Indeed, in the case of COVID-19,
a significant fraction of cases have been identified as asymptomatic
for the entire duration of infection [8]. These also contribute to
community spread of the disease, which can lead to exponential
growth in the number of infections. Secondly, once someone is con-
firmed as infected, he/she is typically isolated and is not allowed to
get involved in any social activities until fully recovered. Thirdly,
existing methods for managing infection spread are primarily reac-
tive. Counter-measures are often taken after a person is confirmed
to be infectious. Subsequently, authorities proceed with counter
measures such as lockdown of the specific geographical region.
Thus, currently, the scope for detection of the infection spread and
its management is limited. Therefore, there is a need for an early
estimate of the potential risk in a geographical region to enable
authorities to act quickly.

For risk estimation to be effective, it needs to identify people
who have greater exposure to the infection, quarantine the exposed
people, identify regions with potentially high exposures, and de-
clare a region as hot-spot even before the outbreak happens in that
region. Additionally, the risk estimation measure should also be
able to identify situations which are likely to lead to transmissions
even when there are not any confirmed presence of the known
infections. Finally, any such risk estimation needs to be adaptable
to a wide range of technology platforms. While a notion of risk
score has been introduced as part of the Exposure API by Apple
Inc and Google, its main drawbacks is that it only provides a risk
measure based on confirmed exposures to infections.

In this paper, we present a risk score that can be used to assess
the risk for individuals based on contact events identified using
smartphones. A key novelty of the proposed risk score is that it
estimates the risk propagation, unlike existing literature that only
assess immediate risk. The proposed risk score can be used to assess
the level of risk within geographical regions, enabling authorities
to act early to contain a potential outbreak. Further, monitoring the
risk score can also help individuals take actions.

In particular, the key contributions of this paper are as follows:

• Infection risk score: We introduce a risk score that esti-
mates infection propagation by monitoring contact events
among individuals.The risk score takes into consideration
factors such as the contact proximity, transmission likelihood
and vulnerability to a disease.

• Evaluation using realistic dataset: We evaluate the infec-
tion risk score using a real-world human contact dataset that
has previously been using to study infection propagation.
Our results show that potentially risky situations are well
captured using the infection risk score.

• Adaption of risk score using smartphones: We provide
detailed description on how smartphones can be used to
implement the infection risk score to track infections.

Finally, we also discuss how the accuracy of infection risk score
can be improved by incorporating contextual information, and also
present a discussion on potential use cases of the risk score for
managing infection spread.

The rest of the paper is organised as follows. Section 2 provides
detailed survey of related techniques and existing metrics used
to quantify risk and exposure. Section 3 provides details of the
proposed risk model. In Section 4 we evaluated the model using
real data. Section 5 provides the details on the propose version of
the smartphone application. This is followed by perspective uses
of the risk score in section 6. We finally conclude in Section 7.

2 RELATEDWORK
Recent studies focusing on containing pandemic can be mainly
classified into three broad groups: survey based studies, IoT based
studies and epidemic model based studies.

In survey based studies, in [19], authors report that factors such
as contact with infected person, work overload, medical history of
the person, and if the person wore Personal Protective Equipment
(PPE) or not play an important role in determining the risk of
infection transmission of COVID-19. Similarly, to identify potential
exposure, WHO uses risk assessment forms to determine the risk
of exposure. Here they ask questions related to if the person wore
the PPE as recommended or not [34].

In IoT based studies, there is increased focus on smartphone
based infection detection. Many applications and IoT Devices are
available that perform contact tracing using proximity checks. A
survey of some of these application is present in [11]. We do not sur-
vey these applications again and instead present, in brief, new appli-
cations and devices that have come-up since the publication of [11].
Recent applications and devices includes EasyBand, a wearable de-
vice that vibrates when amarked (infected) Easyband comes in close
proximity [27]. Nonetheless, it has issues related to centralized con-
trol and communication. In [12], authors used magnetometer based
proximity detection, while in [22] authors used multiple sensors to
improve the distance estimation accuracy. Such techniques fail in
the case when a smartphone lacks certain required sensor. Further,
these applications achieve privacy by architecture and not privacy
by design. Many recent application and IoT devices claim to follow
privacy guidelines such as those mentioned in [27]. These appli-
cations and devices include: (i) Pan European Privacy-Preserving
Proximity Tracing (PEPP-Pt)2 that uses anonymized ID for com-
munication, (ii) TraceSecure that uses secret sharing technique to
identify proximity [4], and (iii) proximity-based privacy-preserving
contact tracing (P3CT) that uses ambient signature protocol [21].
Again, while these applications are privacy preserving, they achieve
privacy by architecture. In summary, these studies model risk using
factors such as distance [4, 12, 20, 22, 27] and duration [6]. These
works mainly use either BLE or magnetometer to estimate distance
from neighbor. Nonetheless, these works do not quantify the risk,
and instead, just provide an estimate of whether a person was in
contact with some other person or not.
2https://www.pepp-pt.org
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On the other hand, from epidemic modeling point of view, there
are many studies that quantify risk using different parameters such
as: size of cough droplets, rate of cough, volume of particles gener-
ated, concentration of pathogens, max distance covered by pathogen
in air, pathogen particles lost due to temperature and humidity, time
an infected person stayed at a given location, duration of contact
with susceptible person, and his pulmonary rate [26]. Most of these
factors, until now, cannot be estimated using smartphone. Instead,
disease specific average values for these factors can be used as
constants while modeling risk score. In [26], authors estimated risk
as an aggregation of risk score for both when a person comes in
direct contact with other person and when a person gets infected
indirectly (a case of community spreading).

3 INFECTION RISK SCORE
In this section, we present the infection risk score that quantifies risk
of catching an infection. Our score considers exposure to pathogen
and context in a social network setting. For convenience, infection
risk score is referred by the term risk score in the remainder of the
paper.

3.1 Network model: Modeling the population
as a temporal network

For any geographical area, we consider the population to be rep-
resented by a temporal graph 𝐺 such that 𝐺 (𝑉𝑡 , 𝐸𝑡 ) is a temporal
snapshot at time 𝑡 that is created by individuals in a given area
𝐴𝑎 . For the purpose of this paper, we consider that the risk score
computation for individuals is done using mobile apps, and hence,
each individual is represented using smartphones. Here 𝑉𝑡 is the
set of smartphones communicating and active at time 𝑡 and 𝐸𝑡 is
the set of edges that exists between smartphones in 𝑉𝑡 . Let Δ𝑡 be
the time difference between two consecutive temporal snapshots
of 𝐺 . For our model we assume that if two people are in contact,
for say 10 epochs, then the edge between them is persistent over
10
Δ𝑡 snapshots of the graphs. Each person 𝑖 ∈ 𝑉𝑡 has a location, 𝑙𝑡 ,
marked by latitude and longitude pair such that 𝑙𝑡 = (𝑙𝑎𝑖,𝑡 , 𝑙𝑜𝑖,𝑡 ).
Given the interactions, at time 𝑡 , each person 𝑖 has a neighborhood,
𝑁𝑖,𝑡 where each person 𝑗 ∈ 𝑁𝑖,𝑡 has an edge (in 𝐸𝑡 ) to the person 𝑖
and is 𝑑𝑖, 𝑗,𝑡 distance apart. Here 𝑑𝑖, 𝑗,𝑡 < 𝜃𝑑 i.e., 𝑖 and 𝑗 are within
communication range and at maximum 𝜃𝑑 distance apart.

3.2 Risk score parameters
In this section, we identify the key factors that impact infection
propagation.

(1) Exposure caused by a neighbor: Communicable diseases
such as COVID-19 generally spread when a person 𝑖 ∈ 𝑉𝑡
comes in close proximity with a infected person (person 𝑗 )
or touches the surface that infected person has touched [26].
In such a case, the person 𝑖 is exposed to pathogens from the
infected person, which can lead to infection spread. The expo-
sure to a neighboring individual is a key factor determining
the likelihood of a transmission event from a neighbor, and
we term this as the neighbor exposure. For the scope of the
current paper, we limit our discussion to the the exposure
caused when an infected person come in close proximity,

although this may easily be extended to include other modes
of propagation.
To determine how the neighbor exposure impacts the spread
of infection, we consider that an infected neighbor 𝑗 exhales
𝑛𝑖, 𝑗,𝑡 ∈ R+ pathogens and these pathogens are homoge-
neously distributed within the permissible 𝜃𝑑 distance. Fur-
ther, we consider the following assumptions: (i) there is no
loss in pathogens, (ii) each time same number of pathogens
are exhaled, and (iii) between two consecutive temporal
snapshots of the graph (i.e., 𝐺 (𝑉𝑡 , 𝐸𝑡 ) and 𝐺 (𝑉𝑡−Δ𝑡 , 𝐸𝑡−Δ𝑡 )),
a person 𝑖 stays in contact with person 𝑗 for the Δ𝑡 time. In
such a scenario, the exposure to an infectious disease of the
person 𝑖 at time 𝑡 with respect to a particular neighbor 𝑗 is
given by 𝐸𝑖, 𝑗,𝑡 = Δ𝑡 × 𝑛𝑖, 𝑗,𝑡 .
In ideal conditions, if a neighbor 𝑗 is not infected, i.e., he/she
does not cough, and wears proper protective gears such
as face mask or face shields, 𝐸𝑖, 𝑗,𝑡 = 0 because there are
no pathogens exhaled by 𝑗 . In such a case, the whole idea
of maintaining social distancing even when people are not
infected would fail and susceptible people would be deemed
harmless. On the other hand, if some neighbor is infected and
coughing badly, 𝐸𝑖, 𝑗,𝑡 >> 0. In this case, other people would
ideally limit from meeting the infected person. In such a
situation also, barring the infected person, other susceptible
people would continue their physical social activities. Let
𝑟 𝑗,𝑡−Δ𝑡 be the risk score of the neighbor at time 𝑡 − Δ𝑡 . To
account for above mentioned aspects and ensure that social
distancing is enforced between susceptible people also, we
add the previous instance risk score of the neighbor to the
exposure caused due to the neighbor, i.e., 𝐸𝑖, 𝑗,𝑡 = Δ𝑡 ×𝑛𝑖, 𝑗,𝑡 +
𝑟 𝑗,𝑡−Δ𝑡 .

(2) Neighbor weight: We define the neighbor weight as the
likelihood that an individual in the vicinity is infectious.
Since we aim to estimate the risk even in situations where
confirmed infections are not known, the neighbor weight
can be estimated based on multiple contextual parameters.
For instance, in the case of communicable diseases such as
COVID-19, if a neighbor is from a hot-spot area or has a
history of the disease then the risk of getting infection from
the neighbor is high because the neighbor is coming from a
containment zone. Further, impact of diseases like COVID-19
is high on people who have a weak immunity either due to
age or have chronic diseases like kidney failure and diabetes.
On top, if a person is staying indoor, with a poor ventila-
tion chances of spreading the disease and getting infected
increases manyfold [28, 32]. In [28], authors recommend that
proper ventilation indoor can reduce infections up-to 60%.
Nonetheless, for COVID-19, different countries have differ-
ent statistics, for example, India having relatively younger
population, middle age people are more infected while more
older people have died. Let 𝑤 𝑗,𝑡 be the weight such that
𝑤 𝑗,𝑡 ∈ [0, 1] that identifies such contextual information of
the neighbor. Summed over all the neighbors of the person 𝑖
at time 𝑡 , the total exposure of 𝑖 from its neighbors 𝑗 ∈ 𝑁𝑖,𝑡 is

3
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thus given by equation 1.

𝐸𝑖,𝑡 =
∑
𝑗 ∈𝑁𝑖,𝑡

𝑤 𝑗,𝑡 × (𝐸𝑖, 𝑗,𝑡 + 𝑟 𝑗,𝑡−Δ𝑡 ) (1)

3.3 Risk score formulation
In addition to the neighbor weight and exposure, we define vul-
nerability as the likelihood that an individual exposed to risky
situations continues to be at risk. At any time 𝑡 the risk score of
an individual 𝑖 is the dependent on the risk score at 𝑡 − Δ𝑡 , his
vulnerability, and the exposure from the neighbors at 𝑡 . The total
risk, thus, is given by equation 2.

𝑟𝑖,𝑡 =
𝑣𝑖,𝑡 × 𝑟𝑖,𝑡−Δ𝑡 +

∑
𝑗 ∈𝑁𝑖,𝑡

𝑤 𝑗,𝑡 × (𝐸𝑖, 𝑗,𝑡 + 𝑟 𝑗,𝑡−Δ𝑡 )
1 +∑

𝑗 ∈𝑁𝑖,𝑡
𝑤 𝑗,𝑡

(2)

Here the denominator is the normalization factor. A disease
usually has a period between when the person 𝑖 gets infected from
the disease and time when he becomes an active spreader of the
disease. For example, for COVID-19, the median incubation period
is around 5 to 6 days3. In our scenario, even if a person comes in
contact with a person for whom the disease is still in incubation
period, the risk exposure is equally high as compared to meeting a
person who is an active spreader. Thus, our model does not consider
the incubation period.

From the equation (2), the value of 𝑟𝑖,𝑡 ∈ R+. If the person
is taken into isolation (i.e., no interaction with neighbors) after
getting infected, his risk score will decrease with a factor 𝑣𝑖,𝑡 and
will eventually decay and reach minimum in 𝑡 = ⌈ 𝑟𝑖,𝑡−Δ𝑡𝑣𝑖,𝑡

⌉ time
instances. This accounts for the fact that risk to and from such
people is minimized when they are in isolation. For simplicity, at
𝑡 = 0 (or the initial condition) for all people we assign them as
susceptible and their risk score to 𝑟𝑖,0 = 1. As the actual infection
state of a person is unknown, the idea of social distancing mandates
to maintain a certain distance even if the person is susceptible.
Maintaining social distancing reduces the possibility of getting
infected. We assign a non zero value to 𝑟𝑖,0 to ensure that social
distance is maintained and our model captures it. For simplicity,
let 𝑟𝑖,0 = 1. As and when a person is officially tagged infected, we
assign 𝑟𝑖,𝑡 = 2. Note that, a low value of 𝑟𝑖,𝑡 , is achieved when all the
neighbors are susceptible. For a new person joining in, we assume
that he is a susceptible person.

Our method only considers ego network of a person for the cal-
culation of the risk score. This enables all the smartphones involved
to compute their individual risk scores simultaneously.

4 EVALUATION AND VALIDATION
In this section we provide an evaluation and validation of our risk
model using a real-world dataset.

4.1 Dataset
While there are many datasets which have previously been used to
study epidemic spread, specially smartphone based datasets that
use Call Detail Records (CDRs) and GPS location information, [5],
they are (i) not widely used [23], and (ii) mostly generated from a

3https://www.mohfw.gov.in/pdf/DGSOrder04of2020.pdf

random population sample which do not reflect true neighborhood
size. Instead, we use a dataset of 789 individuals (including students
and teachers) obtained on a single day in an American high school
that has 158 rooms [25], which has previously been used to study
spread of infectious diseases [28]. Here each point of interest (POI)
is considered to be a room in the school. The dataset is mainly used
to study human contact network for infectious disease transmission.
The dataset is collected between 6AM to 4:30PM at an interval of
20 seconds. The granularity of positioning information available
is at the level of rooms, and hence, each individual is geo-tagged
with the room ID they are in at a particular epoch. We consider
that contact events occur between individuals whenever they are
in the same room, and all individuals present in a particular room
at a given epoch are connected to each other.

The temporal distribution of individuals in the dataset is shown
in Fig. 1. Fig. 1(a) shows the heatmap of number of people present in
a room at different epochs. The white color represents that nobody
was present in a room at the particular epoch. Fig. 1(b) presents
total number of people in a school at a given epoch. A sudden
increase and a sudden drop in the number of people accounts for
the beginning of the school in the morning when people arrive,
and the end of the day, when they went back from school. Fig. 1(c)
presents the maximum number of rooms occupied by people. Note
that at maximum only ≈62% rooms are occupied. Fig. 1(d) presents
ratio between number of people in the school and rooms occupied
at a given time. The maximum average density of people in a room
is 9. A sudden increase at the end of the day is because most of the
people were present in a single room. Fig. 1(e) presents number
of times a given room was occupied during the data collection
period. From the figure we infer that (i) some rooms were always
empty and nobody went to those rooms, (ii) the entire population
is concentrated in only a few rooms and after certain time period
there is an exponential decrease in the population indicating the
end of classes in the school, (iii) during the day, rooms gradually
start to fill up and there is an exponential rise in the population
size.

4.2 Dynamics of epidemic spread on the
contact network

We evaluate the proposed risk score using both SI (Susceptible-
Infected) and SIS (Susceptible-Infected-Susceptible) models. Here,
we note that, since the risk score looks at contact events only, we
do not evaluate an SEIR (Susceptible-Exposed-Infected-Recovered)
model, as identification of "exposed" and "recovered" states are not
the focus of the model.

Let 𝑆𝑖,𝑡 be the fraction of people that are susceptible in a region
𝑖 at time 𝑡 , 𝐼𝑖,𝑡 be the fraction of population that is infected in a
region 𝑖 at time 𝑡 , 𝑁𝑖,𝑡 = 1 be the faction of total population in
the region at time 𝑡 , 𝛽𝑖 be the infection rate in the region 𝑖 , and
𝛾𝑖 be the recovery rate in the region 𝑖 . Note that at any given
point of time 𝑁𝑖,𝑡 = 𝑆𝑖,𝑡 + 𝐼𝑖,𝑡 because we consider only two states,
susceptible and infected. The change in the fraction of susceptible
and infected people over time is given by equation (3) [10]. Here the
underlying assumptions are that there is a homogeneous mixing of
the population and no birth and death happens (the total population
is fixed).
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Figure 1: Temporal distribution of people in the rooms. (a)
Heatmap showing number of people in each roomover time.
The white color represents empty room at the particular
epoch. (b) Total number of people present in the school over
time. (c) Total number of room occupied in the school over
time. (d) average density of each room. (e) Number of times
a room is occupied.

𝑑𝑆𝑖,𝑡
𝑑𝑡

= − 𝛽𝑆𝑖,𝑡 𝐼𝑖,𝑡
𝑁𝑖,𝑡

+ 𝛾𝐼𝑖,𝑡
𝑑𝐼𝑖,𝑡
𝑑𝑡

= −𝑑𝑆𝑖,𝑡
𝑑𝑡

(3)

4.3 Results
Currently, the exact behavior of exposure and vulnerability param-
eters for pandemics such as COVID-19 is not known. Further, as
the dataset is POI based, actual distances are also not available in
the dataset. Thus, we assume that the exposure parameter for each
person is normally distributed with 𝜇 = 0.5 and 𝜎 = 0.1. Further, the
vulnerability parameter is also normally distributed with 𝜇 = 0.5
and 𝜎 = 0.2.

For our analysis we study following three aspects using different
initial condition, infection rate, and recovery rate. First, we identify
fraction of people who are identified infected using the SIS and SI
epidemic models. This helps us understand the infection spread
over time in the population and understand the dynamics on the
contact network. Second, we measure the ratio between the median
risk scores of infected people and susceptible people. A ratio more
than one indicates that the risk score of infected people is more,
as intended. A higher ratio implies that the risk score can be used
to better identify people who are exposed to infection and have
high probability to get infected. When there are no infections in a
neighborhood, this value tends to 0. Third, we study the fraction of
people that are alerted using our model.

To test and study the above-mentioned aspects, as an initial
condition, the values for 𝐼𝑖,0, 𝛽𝑖 and 𝛾𝑖 used are 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5},
𝛽𝑖 ∈ {0.0, 0.5, 1.0} and 𝛾𝑖 ∈ {0.0, 0.75}. 𝐼𝑖,0 = 0.0 states that there
are no initial infections in the region. 𝛽𝑖 = 0.0 states there are no
transmission happening and the disease does not spread via contact.
On the other hand, 𝛽𝑖 = 1.0 would state that the disease is highly
contagious. Similarly, 𝛾𝑖 = 0.0 would state that there is no recovery

which is equivalent to SI type epidemic model. 𝛾𝑖 = 0.75 would
mean that the recovery rate is 75% (i.e. similar to the recovery rate
of COVID-19 patients in India4). The results presented here are
averaged over 50 simulations runs and conducted using python.

Figures 2 and 3 present results obtained for the above-mentioned
aspects when different values of 𝐼𝑖,0, 𝛽𝑖 and 𝛾𝑖 are used for SIS and
SI models respectively. The 𝛽𝑖 and 𝛾𝑖 values are assumed to not
vary across rooms. Fig. 2 is obtained when 𝛾 = 0.75 while Fig. 3
is obtained when 𝛾 = 0.0. From the Fig. 2, as per SIS model, when
there is no infection, dissemination of infection does not occurs
because subsequent 𝑑𝐼𝑖,𝑡/𝑑𝑡 = 0 (see fig. 2(a)). This lead to ratio of
median risk scores (represented as 𝑟𝑚,𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑/𝑟𝑚,𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 ) to be
0 as there are no infected people (see Fig. 2(b)). The inset Fig. 2(b’)
shows the median risk scores of susceptible people (𝑟𝑚,𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 )
and indicates that, even when there are no confirmed infections,
crowded situations which carry high risk can be identified as having
high risk scores. As our risk model is not dependent on 𝛽𝑖 , 𝛾𝑖 , and
initial infection, via risk score, we are able to detects potential risky
situations (see fig. 2(c), 2(f), and 2(i)) which epidemic models such
as SIS model are not able to detect. For cases when 𝐼𝑖,0 ≥ 0.01
and 𝛽𝑖 ∈ {0.0, 0.5, 1.0}, we observe that infections either die off
(for 𝛽𝑖 = 0.0) or achieve stability (for 𝛽𝑖 ∈ {0.5, 1.0}, see fig. 2(d)
and 2(g)). The reason for reduction in infections is the recovery
rate, while for stability it is the low number of people present when
𝑒𝑝𝑜𝑐ℎ > 1500. The ratio of median risk scores for different 𝛽𝑖 and
𝐼𝑖,0 ≥ 0.01 is shown in fig. 2(e) and 2(h)) where we observe that after
few epochs the ratio is < 2 and even reaches < 1 in short duration.
This behavior is because (a) the median value of infected identified
by SIS model is less than the median value that of susceptible people
and (b) the number of infected is less that number of susceptible.
From the fig. 2(f) and 2(g) we also see that, irrespective of the
epidemic state, most of the people are at high risk.

On the other hand, from Fig. 3, we see that when there is no
recovery (i.e., 𝛾𝑖 = 0.0) and when 𝐼𝑖,0 = 0, the behavior is similar
to previous scenario (see fig. 3(a), 3(b), 3(b’), 3(c), 3(f), and 3(i)).
Nonetheless, when 𝐼𝑖,0 > 0.0 and 𝛽𝑖 ≠ 0.0, the infections eventually
reach entire population which is true as there is no recovery (see
fig. 3(d) and 3(g)). Further, in this case, due to the above-mentioned
reason, ratio of median risk scores is also high (see fig. 3(e) and 3(h)).
Ratio equal to 1 is achieved when 𝛽𝑖 = 0.

As the results presented here show, the growth in risk score
values increases when there is increased contact of susceptible
individuals with infected individuals. Further, even in situations
where infections are unknown, the risk score values are shown
to grow when there are more crowded situations and population
movement among those. Thus, the risk score values can be used
for managing infection spread, even before confirmed infections
are identified.

5 RISK SCORE IMPLEMENTATION USING
SMARTPHONES

In this section, we demonstrate how the proposed risk score can be
implemented as part of a smartphone based infection tracking ap-
plications. There are two main components required for estimation

4https://www.financialexpress.com/lifestyle/health/indias-covid-19-recovery-rate-
nears-75-case-fatality-rate-one-of-the-lowest-globally-at-1-86/2063108/
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Figure 2: Results for SIS epidemic model, 𝛽 ∈ {0.0, 0.5, 1.0}, 𝛾𝑖 = 0.75 and 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5}

of the risk score on a smartphone - (a) aggregation of risk scores of
neighboring smartphones, and (b) computation of the risk score of
the smartphone itself. Similar to the infection tracking applications
used for COVID-19, we consider that estimation of the exposure is
done using BLE. However, unlike existing applications which use
centralized data repositories to obtain risk scores of neighboring
smartphones (i.e. if they are confirmed to be infected), using our
approach, each smartphone can (a) periodically broadcast its own
risk score, by embedding this value in the BLE advertising packets,
and (b) periodically update its own risk score by aggregating the
risk scores of all other smartphones in its neighborhood. Such an
approach has the following advantages:

• The risk score computation does not need to depend on a
centralized database containing information about infected
individuals, which might be outdated.

• The risk score reflect encounters not just with confirmed
individuals, but also present environments that are risky
from the perspective of infection spread.

• Our approach is better suited for privacy preservation, since
no information pertaining to the identity of individuals is
stored or communicated.

Next, we provide details on the design of the BLE advertising
packet as well as how risk score computation can be done individu-
ally by a smartphone application. For the purpose of this discussion,
we refer to the smartphone performing the risk computation as

6



Infection Risk Score: Identifying the risk of infection propagation based on human contact COVID-19, November 3, 2020, Seattle, WA, USA

Figure 3: Results for SI epidemic model, 𝛽 ∈ {0.0, 0.5, 1.0}, 𝛾𝑖 = 0.0 and 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5}

Figure 4: BLE Packet Format

the ego node, and all other smartphones in its vicinity as neighbor
nodes.

5.1 BLE advertising packet
Existing infection tracking techniques record the BLE Media Access
Control (MAC) addresses of nearby smartphones [14] and compare
them with a centralized database of infected individuals. Instead,

we discuss how we use the BLE advertising packet to communicate
risk score values.

The BLE advertising packet allows including optional payload of
up to 31 bytes [17]. We use these available bytes for broadcasting
the risk score. Our payload includes:

(1) A 128-bit unique identifier (UUID) which is a fixed value
used to identify the service, enabling each smartphone to
filter out all nearby beacons broadcasting the risk score.

(2) A 6 bytes long Risk score which includes the risk score
value rounded to two decimal places and prefixed by “r”.

(3) A 5 bytes long weight of the neighbor which includes the
neighbor weight value rounded to two decimal places and
prefixed by “w”.
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RSSI Neighbor weight
> -55 dbm 0.8
> -63 & ≤ -55 dbm 0.5
> -75 & ≤ -63 dbm 0.1
≤ -75 dbm 0.0

Table 1: Neighbor exposure estimation from RSSI values of
BLE advertisements received from neighbors

Fig. 4 shows the payload format of the BLE advertising packet.

5.2 Risk score computation
In addition to the risk scores obtained from the BLE advertisements
from the neighbors, the weight of the neighbors, and exposure
caused by the neighbors are also required for the purpose of risk
score computation, along with the vulnerability of the node itself.
Note that here “node” means the smartphone.

5.2.1 Neighbor exposure. The exposure from a neighbor is an esti-
mation of the likelihood of a transmission event from a neighbor. For
infectious diseases such as COVID-19, the likelihood of transmis-
sion increases with close contacts. While BLE signal characteristics,
such as received signal strength indication (RSSI) and attenuation,
can be used for distance estimation, they are known be noisy es-
timators [18]. Hence, for the purpose of estimation of exposure
from the neighbor, we use a coarse grained mapping, similar to
those used in the Exposure API [7]. Based on the existing studies,
Table 1 shows how the exposure values can be mapped from the
RSSI values [15]. A higher RSSI values maps to a higher exposure
from a neighbor.

5.2.2 Neighbor weight. The neighbor weight is an estimate of the
likelihood of a neighboring node to be infectious, which can de-
pend on a range of factors, such as the prevalence of preexisting
diseases, age, etc. If such information is available, the derived neigh-
bor weight is included in the BLE advertising packet. However,
while such information may not always be available at an individ-
ual level, approximate measures are often available at a population
level, which can be used as fixed values for all smartphones in a
geographic region. For instance, neighbor weight may be derived
from the basic reproduction number (R0) [9] value for a particular
epidemic for a given geographical region.

5.2.3 Vulnerability. The vulnerability of the ego node is an esti-
mate of how quickly an individual can recover when exposed to
infection, and as with the neighbour weight, this depends on a
range of factors such as preexisting conditions, age, etc, as well as
the nature of the disease itself [3]. When available, such informa-
tion is incorporated in the computation of the risk score by the ego
node.

Currently, the only data shared between the smartphones are
the neighbor weights and risk score values. These values are com-
puted on individual smartphones and shared with the neighbors.
As no other parameter is shared other than computed values of
neighbor weights and risk score and no other information about
the neighbor is shared, we enable privacy by design. As a proof of

concept implementation, we can also provide an alpha version of a
smartphone application upon request for the readers to test.

6 FUTURE DIRECTIONS
While the risk score proposed here focuses on parameters that can
be readily measured using smartphones, it can be developed further,
both in terms of increasing it’s accuracy towards risk estimation,
as well as applying it to individual use cases, which we highlight
in this section.

6.1 Increasing accuracy of risk score
The accuracy of the risk score proposed in this paper can also
be increased by incorporating additional contextual information,
where available. Some examples of this are:

• Indoor and Outdoor location detection: The likelihood
of infection spread has been known to be higher in indoor
environments compared to outdoor [28]. This can be incorpo-
rated into the risk score by first, automatically detecting the
indoor/outdoor context [1], and secondly, by incorporating
it into the risk score itself.

• Identification of exposure context: As outlined previ-
ously in section 5.2, by identification of the infection context
in real-time, the risk score computation can be made more
accurate. This can include detection of respiratory symptoms
to better estimate the exposure [16, 29].

In addition to the points above, a general challenge with all in-
fection tracking applications is that they do not cater to the entire
population, since people may not always have access to smart-
phones and other IoT devices.

6.2 Use cases
The proposed risk score is applicable towards monitoring and man-
aging the spread of infection for population groups, such as over a
geographical region, as well as for individuals.

(1) Risk score at different spatial scale: The proposed risk
score, in addition to computing score of an individual can
be used to compute the risk score at any spatial scale (i.e.,
a country, a city, a building, a house, a room). For instance,
considering 𝐴𝑎 be the area for which risk score has to be
computed, such as a district, and let 𝐿𝑎 be the group of people
in that region at time 𝑡 . The risk score of region 𝐴𝑎 at time 𝑡
is defined as equation 4.

𝑟
𝐴𝑎

𝑡 =

∑
∀𝑖∈𝐿𝑎 𝑟𝑖,𝑡
| |𝐿𝑎 | |

(4)

Here, | |𝐿𝑎 | | represents the number of people in𝐴𝑎 . Consider
a region, 𝑅 to be comprised of many 𝐴s, the total population
at time 𝑡 , 𝑁 𝑡 is thus

∑
𝑖∈𝑅 | |𝐿𝑖 | |. Some examples include:

(a) Monitoring of geographical regions by government au-
thorities: As evidenced by the COVID-19 pandemic, the
infection spread often starts from small geographical re-
gions, which can grow exponentially if early actions are
not taken. Our proposed risk score can be used to obtain an
early estimate of the likelihood of infection transmissions
within a geographical region. Subsequently, preventative
actions, such as increased testing, can be taken, without
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even resorting to lockdowns that have economic and social
impacts.

(b) Monitoring of individual buildings: An important as-
pect of managing the spread of infections is to reduce the
likelihood of spread in controlled environments, such as
office buildings, hotels, hospitals, etc. In such scenarios,
risk score can be used to monitor behavior of individuals
within such a region, and take quick actions even before
any infection is confirmed. Some examples of such use
cases are:
(i) Hotels: Guest movements and interactions among guests

at hotels can have significant consequences to the in-
fection spread in a pandemic, as has been seen in the
case of COVID-19 [30]. The risk score can be used to act
quickly by enforcing close monitoring of the individuals
who are found to be in risky situations.

(ii) Hospitals: In order to handle increasing case loads during
a pandemic, hospitals typically have dedicated wards.
In such cases, it is critical to minimize the likelihood
of transmission from such dedicated wards to other
wards in the hospital [24], which can be done through
monitoring of the risk scores of patients, doctors and
other hospital staff.

(iii) Office buildings: Managing the recovery from a pan-
demic is equally important to managing it’s spread, and
the risk score can be used as a part of the plans used for
businesses and office buildings [31].

Similar scenarios may be envisioned for other closed en-
vironments, such as residential buildings, supermarkets,
shopping malls, airports, etc.

(2) Individual monitoring: Risk score can also be used to pro-
vide real-time alerts to individuals to take action. For in-
stance, it can be used to provide prompts to wear mask if
one is detected to move from a less risky region to more risky
one. Further, risk score can be used to provide personalized
alerts for individuals. For instance, vulnerable people (i.e.
who are likely to be affected more due to pre-existing condi-
tions), can be alerted early by using a lower alert threshold.

7 CONCLUSION
In this paper, we introduced a risk score that estimates infection
propagation by leveraging the neighborhood of an individuals at
a given time. On top, our risk score also takes into consideration
factors transmission likelihood and vulnerability to a disease. Our
results show that our risk score is able to capture potential risky sit-
uations. To further leverage our risk score we demonstrate how our
risk score can be implemented in a contact tracing applications and
as a proof of concept make it available upon request. Nonetheless,
as future directions, we provide use cases and potential parameters
that can be included in the risk score to make it more robust.
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Abstract
Spatial sciences and geography have been integral to the model-

ing of and communicating information pertaining to the COVID-19
pandemic. Epidemiological models are being used within a geo-
graphic context to map the spread of the novel SARS-CoV-2 virus
and to make decisions regarding state-wide interventions and allo-
cating hospital resources. Data required for epidemiological models
are often incomplete, biased, and available for a spatial unit more
extensive than the one needed for decision-making. In this paper,
we present results on a global sensitivity analysis of epidemiologi-
cal model parameters on an important design variable, time to peak
number of cases, within a geographic context. We design experi-
ments for quantifying the impact of uncertainty of epidemiological
model parameters on distribution of peak times for the state of Cal-
ifornia. We conduct our analysis at the county-level and perform
a non-parametric, global sensitivity analysis to quantify interplay
between the uncertainty of epidemiological parameters and design
variables.
CCS Concepts
• Information systems → Geographic information systems.
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Sensitivity Analysis, Epidemiological Model, COVID-19, Spatial-
temporal Analysis, Uncertainty
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1 Introduction
COVID-19 is a severe acute respiratory syndrome (SARS) caused

by the SARS-CoV-2 virus [7]. On March 11, 2020, COVID-19 is
declared to be a pandemic with 12,552,795 infected persons and
561,617 deaths globally as of July 12, 2020 [12]. In the United States,
the number of total cases is at 4,974,959 with 161,284 deaths [12],
making the COVID-19 pandemic a national problem.

Spatial analysis has played an essential role during the COVID-19
crisis in terms of spatial analysis of transmission and the number of
new cases [2, 6, 11, 13, 20, 21], and mapping susceptible populations
[10]. The SARS-CoV-2 is contracted from person-to-person via

COVID-19, November 3, 2020, Seattle, WA, USA
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respiratory droplets [18], making public places where people are in
close contact likely places for high transmission rates [2, 6].

Epidemiological models are used within a geographic context
to map the spread of the novel SARS-CoV-2 virus and to make
decisions regarding state-wide interventions and allocating hos-
pital resources [13]. Data required for epidemiological models are
often incomplete, and biased, making uncertainty quantification a
necessity for decision-making. The spatial resolution of currently
available curated data for United States COVID-19 case and death
statistics is at the county-level. Thus, it is important to understand
the impact of epidemiological model parameters on actionable vari-
ables within a geographic setting.

In this research paper, a sensitivity analysis on decision vari-
ables is conducted, and implications of parameter uncertainty on
decision variables used by public health officials are showcased for
California. We use the Sobol sensitivity [17] to model the impact of
epidemiological variables on the spatial and space-time patterns of
new COVID-19 hospitalizations at the county level in the state of
California. We use the CHIME model (COVID-19 Hospital Impact
Model for Epidemics) [5] from University of Pennsylvania to define
COVID-19 hospitalization projections. The spatiotemporal series
for predicted new COVID-19 hospitalizations is summarized tem-
porally and spatially with time to peak demand, and the Moran’s I
statistic, respectively. The impact of epidemiological parameters of
the CHIME model on the space-time patterns of modeled hospital
demand are quantified with the Sobol sensitivity.
2 Data & Methodology
2.1 Data

CHIMEmodel requires several parameters, including population,
the number of currently hospitalized COVID-19 patients, doubling
time, social distancing effect, infectious days, and optional including
hospital resource parameters (number of beds, intensive care units
(ICUs) and ventilators) to forecast future COVID-19 hospitalizations
and its impact on the hospital resources.

The population data used in the model is from ESRI’s 2019 Up-
dated Demographics 1. This data updates annually based on sev-
eral sources of data, including a full-time series of intercensal and
vintage-based county estimates from the US Census Bureau and
a time series of county-to-county migration data from the Inter-
nal Revenue Service. Projections are necessarily derived from cur-
rent events and past trends, which is calculated from previous
census counts provided by the American Community Survey (ACS).
COVID-19 related data, including incidence, confirmed cases and
death are all from JHU CSSE COVID-19 Data 2[4].

1https://doc.arcgis.com/en/esri-demographics/reference/methodologies.htm
2https://coronavirus.jhu.edu/
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2.2 The CHIME Model
Predictive Healthcare at Penn Medicine initiated the tool Hos-

pital impact model to assist hospitals and public health officials
with capacity planning, including daily increase, peak hospitalized
census, ICU admissions, number of patients requiring ventilators
and timeline prediction.

CHIME model is one of many customized models based on SIR
(Susceptible, Infected, Recovered) model [1], which is a commonly
used epidemiological model to forecast the number of infected peo-
ple from a disease in a closed population over time. The main idea of
this model is dividing the population into compartments through-
out the progression of the disease, such as susceptible, infected
and recovered population. The model dynamics are defined by the
following equations:

𝑆𝑡+1 = 𝑆𝑡 − 𝛽𝑆𝑡 𝐼𝑡 (1)

𝐼𝑡+1 = 𝐼𝑡 + 𝛽𝑆𝑡 𝐼𝑡 − 𝛾𝐼𝑡 (2)

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼𝑡 (3)

where 𝛽 represents the effective contact rate, which can be com-
puted as the transmissibility 𝜏 multiplied the average number of
people exposed 𝑐: 𝛽 = 𝜏 × 𝑐 . The transmissibility is the basic prop-
erty related to the virulence of the pathogen, but the number of
people exposed is the parameter can be changed by policies, like
social distancing or mask wearing. 𝛾 is the inverse of the mean
recovery time, and recovery time indicates the period of infection
getting cleared and varies for the severity of the symptoms. For
COVID-19, the average is normally considered as 1/14. The basic
reproduction number (𝑅0) is an indicator of the contagiousness or
transmissibility of infectious and parasitic agents and represents
average number of people can be infected by any given infected
person without immunity from past exposures or vaccination [3].
It is defined as 𝑅0 = 𝛽/𝛾 . The disease is supposed to spread if 𝑅0 is
> 1 and the larger the number is, the faster it will spread. Since the
transmissibility and social contact rates are hard to compute, this
parameter can be replaced by doubling times. Since the rate of new
infections in the SIR model 𝑔 can be computed with doubling time
𝑇𝑑 : 𝑔 = 𝛽𝑆 − 𝛾 , 𝛽 can be computed with the initial population size
of susceptible individuals as 𝛽 = (𝑔 + 𝛾).

ESRI has developed a toolbox for the CHIME model and parame-
ters used in sensitivity analysis and their explanations are shown
in Table 1.
2.3 Sobol Sensitivity

Sobol sensitivity analysis quantifies the impact of total-effect
indices and higher-order interactions and has no limit for the prepa-
ration of the input sample, and such characters enable it to deal
with auto-correlated spatial input [8].

The Sobol method is one of the variance-based methods, which
can compute sensitivity indices regardless of the linearity or mono-
tonicity, or other assumptions on the underlying model. In variance
based method, the fractional contribution of each input to the vari-
ance V of the model is estimated and the total variance 𝑉 of the
model output is decomposed to calculate the sensitivity indices for
every independent 𝑋𝑖 .

𝑉 =
∑
𝑖

𝑉𝑖 +
∑
𝑖< 𝑗

𝑉𝑖 𝑗 +
∑

𝑖< 𝑗<𝑚

𝑉𝑖 𝑗𝑚 + · · · +𝑉12...𝑘 (4)

where 𝑉𝑖 is the share of the output variance explained by the
𝑖th model input, and indicates the sensitivity of 𝑌 to 𝑋𝑖 . 𝑉𝑖 𝑗 is the
share of the output variance explained by the interaction of the
𝑖th and 𝑗th model inputs, and indicates the sensitivity of 𝑌 to the
interaction of 𝑋𝑖 and 𝑋 𝑗 . 𝑘 is the total number of the model inputs.

The first-order sensitivity computes the contribution to the out-
put variance of the main effect of𝑋𝑖 and is defined with conditional
variances as

𝑍𝑖 =
𝑉𝑖

𝑉
=
𝑉𝑎𝑟 [𝐸 (𝑌 |𝑋𝑖 )]

𝑉𝑎𝑟 (𝑌 ) (5)

where the inner expectation of the numerator is conditional on
𝑋𝑖 taking a value 𝑋𝑖∗ within its range of uncertainty, while the
outer variance is calculated over all possible values of 𝑋𝑖 . If the
variance of the conditional expectation 𝐸 (𝑌 |𝑋𝑖 = 𝑥𝑖∗) for some
particular value 𝑋𝑖 = 𝑥𝑖∗ is relatively large when compared to the
total variance, and all the effects of the 𝑋 𝑗 , 𝑗 ≠ 𝑖 , then factor 𝑋𝑖 can
be considered as an influential one. Similarly, 𝑍𝑖 𝑗 =

𝑉𝑖 𝑗
𝑉

indicates
the sensitivity indices of the interaction effect of 𝑋𝑖 and 𝑋 𝑗 [17].

According to
∑𝑘
𝑖=1 𝑍𝑖 +

∑𝑘
𝑖=1 𝑍𝑖 𝑗 + · · · + ∑𝑘

𝑖=1 𝑍𝑖 𝑗 · · ·𝑘 = 1, total-
order index 𝑍𝑇𝑖 , which measures the contribution to the output
variance of 𝑋𝑖 including all variance caused by its interactions, of
any order, with any other input variables can be defined as

𝑍𝑇𝑖 = 1 − 𝑉−𝑖
𝑉

= 1 − 𝑉𝑎𝑟 [𝐸 (𝑌 |𝑋−𝑖 )]
𝑉𝑎𝑟 (𝑌 ) (6)

Sobol sensitivity quantifies the contribution of variance from
a set of explanatory variables on the variation of target variable
of interest. Thus, it provides a statistical framework within which
the impact of a model parameters can be assessed marginally and
jointly.
2.4 Experimental Design

The method of Sobol sensitivity analysis computes the indices by
using the decomposition of the output variance in Eq.1. Capturing
representative variance requires rigorous design of experiments.
In this work, experiments are designed using the Saltelli sampling
scheme [15]. Steps of defining experiments are elaborated below:

(1) Choose an integer N as the size of the base sample.
(2) Generate a sample matrix (𝑁, 2𝑘) of the input factors by

using the Saltelli sampler, where 𝑘 is the number of input
factors. Divide the matrix into two and define each part as
𝐴 and 𝐵, which contain half of the sample data.

(3) Duplicate the matrix 𝐴 and replace the 𝑖-th column with the
same column from matrix B, then define it as 𝐷𝑖 . The matrix
𝐶𝑖 is the duplicate of matrix 𝐵, except that the 𝑖 − 𝑡ℎ column
is replaced with the 𝑖 − 𝑡ℎ column in matrix A.

(4) Compute the model output for all the input values in the
sample matrices and then use the Eq.5 and 6 to compute the
sensitivity indices.

Sampling scheme above defines experiments to model variance
of response variables without increasing the computational load
by employing full factorial design.
2.5 Spatiotemporal Sensitivity Analysis

The output response for every experiment is a spatiotemporal
series of CHIMEmodel output.We summarize the predicted number
of hospitalizations time series at every county with time to peak
hospitalizations.
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Table 1: Parameters in the CHIME model

Parameter Explanation

Doubling Time in Days The number of days that the number of infected individuals to double without interventions.
Social Distancing The quantitative estimation of social contact reduction in each catchment area.
Infectious Days The number of days an infected person has the ability to infect others.

Hospitalization Rate The percentage of all infected cases that will need hospitalization.
Average Days of Hospital Stay The average number of days COVID-19 patients have needed to stay in a hospital.

ICU Rate The percentage of all infected cases which will need to be treated in an ICU.
Average Days in ICU The average number of days COVID-19 patients have needed ICU care.

Ventilated Rate The percentage of all infected cases that need mechanical ventilation.
Average Days on Ventilator The average number of days with ventilation needed for COVID-19 patients.

𝑡
(𝑖)
𝑝𝑒𝑎𝑘

= max
1≤𝑡 ≤𝑡𝑚𝑎𝑥

𝐻
(𝑖)
𝑛𝑒𝑤 (7)

In Eq. 7, the time to peak hospitalizations at location 𝑖 , 𝑡 (𝑖)
𝑝𝑒𝑎𝑘

, is

the time at which the number of predicted hospitalizations 𝐻 (𝑖)
𝑛𝑒𝑤

reaches its maximum value. In cases where projections decline,
𝑡
(𝑖)
𝑝𝑒𝑎𝑘

is assumed to be 0. 𝑡 (𝑖)
𝑝𝑒𝑎𝑘

reduces the time series into a spatial
distribution of time to peak hospitalizations, denoted as 𝑇𝑝𝑒𝑎𝑘 =

𝑡
(1)
𝑝𝑒𝑎𝑘

, 𝑡
(2)
𝑝𝑒𝑎𝑘

, ..., 𝑡
(𝑁 )
𝑝𝑒𝑎𝑘

.
The spatial distribution of time to peak hospitalizations are sum-

marized using the Moran’s I statistic, that quantifies the spatial
patterns of time to peak hospitalizations.

𝐼 =
𝑁
∑𝑛
𝑖=1

∑𝑛
𝑗=1𝑤𝑖, 𝑗 (𝑡 (𝑖)𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 ) (𝑡
( 𝑗)
𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 )

𝑊
∑𝑛
𝑖=1 (𝑡

(𝑖)
𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 )2
(8)

In Eq. 8, w is the geographic weight, and𝑊 is the sum of all
weights,𝑊 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1𝑤𝑖, 𝑗 . A positive and statistically signifi-

cant 𝐼 indicates spatial clustering, and a significant and negative 𝐼
indicates dispersion of 𝑡 (𝑖)

𝑝𝑒𝑎𝑘
.

3 Results
The decision variable we investigate is the spatial clustering of

time until the peak number of cases, 𝑇𝑝𝑒𝑎𝑘 , are observed at a given
county.A short time to peak indicates that the hospitals in that
county are about to receive a high number of COVID-19 patients.
Spatial clustering of𝑇𝑝𝑒𝑎𝑘 indicates that similar volumes in hospital
demand will exist at neighboring counties.

We conducted 800 simulations by varying three model param-
eters. Our choice behind these parameters are due to high uncer-
tainty associated with them. According to epidemiology analysis,
the (𝑅0) ranges from about 2 to 6 based on initial estimates of the
early dynamics of the outbreak inWuhan, China [14]. The doubling
time is computed with this uncertainty range. According to CDC
and other researches, 88% and 95% of specimens no longer yielded
replication-competent virus after 10 and 15 days, but recovery of
replication-competent virus between 10 and 20 days after symptom
onset has been documented in some persons with severe symptoms
[19]. The uncertainty of infectious days is then chosen from 10 to
20. Experiment parameters and their ranges are presented in Table
2.

Table 2: Epidemiological Experiment Variables

Epidemiological Experiment Variables

Doubling Time in Days [2.27,10.05]
Social Distancing (%) [0,50]

Infectious Days [10,20]

We present the response surface for the average number of days
to peak in the state of California with respect to uncertain model
parameters. The response surface is depicted in Figure 1.

Figure 1: Surface Plot of Sensitivity Analysis
In some of our simulations, the peak is not observed within our

simulation time span (180 days). These simulations correspond
to peaks in the response surface. Our results indicate that for in-
creasing doubling time and social distancing, the peak is delayed.
Response surfaces with respect to infectious days indicate a more
complex relationship that points to a high amount interaction be-
tween infectious days and other epidemiological variables.

Figure 2: Tornado Plot for Sobol Sensitivity
Sensitivity of spatial patterns of 𝑇𝑝𝑒𝑎𝑘 is showcased in Figure 2.

Doubling time is the most first-order sensitive variable, followed
by social distancing and infectious days. The variables are ranked
with respect to their first-order sensitivity. Note that all three model
variables have high total sensitivity. This indicates strong interac-
tions between these variables and the spatial patterns of hospital
demand.
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Next, we depict spatial patterns of 𝑇𝑝𝑒𝑎𝑘 with four extreme real-
izations from our set of 800 simulations. The spatial distribution of
𝑇𝑝𝑒𝑎𝑘 for different cases are shown in Figure 2:

Figure 3: Time toPeakCases forDifferentModel Parameters.
Basemap courtesy of Esri and its partners

Figure 3 elaborates the importance of epidemiological model
parameters on the spatial patterns of potential hospital surges. For
short doubling times (fast transmission) and low social distancing,
we observe significantly high peaks that occur within a week of
our simulation start time in most of North California. Zero days
to peak implies that a significant peak in cases is not observed. In
our simulations, these locations with zero time to peak also have
low number of new hospitalizations. Thus, for high doubling time
and high levels of social distancing (top-left) no significant surges
are observed. Figure 3 motivates the importance of incorporating
uncertainty pertinent to epidemiological parameters for decision
making.
4 Discussions

For the experimental design, asymptomatic and pre-symptomatic
patients should be considered to improve the accuracy of the model.
𝑆𝐴𝑅𝐼𝐼𝑞𝑆𝑞 model is developed based on SIR model, which takes as-
ymptotic or mildly symptomatic, isolated infected and quarantined
susceptible individuals into consideration[16]. As the proportion of
COVID-19 transmission due to asymptomatic or pre-symptomatic
infection compared to symptomatic infection is unclear, further
study on virology need to be conducted [9].
5 Conclusions

Geographical sensitivity analysis shows complex interactions be-
tween uncertain epidemiological parameters and spatial patterns of
COVID-19 incidence. In particular, doubling time and social distanc-
ing are shown to have a considerable impact on the spatial patterns
of surges in the number of hospitalizations. Experimental design
and associated simulations of time to peak hospitalization depicts
the impact of uncertainty on decision variables. Sobol sensitivity
analysis reveals high order interactions between model parame-
ters, quantified by high total order sensitivity terms for all model

parameters. Study showcases the importance of accurate under-
standing of COVID-19 drivers for spatial planning as drastic ranges
for hospital surge times are observed in different simulations. Our
results indicate that overall peak for new hospitalizations show
spatial clustering, meaning nearby counties are likely to experi-
ence hospital surges at similar times. This points to the importance
of resource planning ahead of time as our simulations show that
directing patients during a surge to nearby counties may not be
possible.
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ABSTRACT
More than 150 colleges have reported hundreds of COVID-19 con-
firmed cases over all the states as the campuses have reopened
and the schools have resumed in-person classes, after switching
overnight to online teaching in the spring. We conduct a large scale
study on education by using a geotagged Twitter dataset, which
spans the whole U.S. during parts of the spring, summer, and fall
terms of 2020. We analyze the temporal and spatial patterns of
COVID-19 cases. Then, we conduct content and sentiment analysis
to discover which topics and which thoughts people located at U.S.
colleges and universities are communicating.
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1 INTRODUCTION
The COVID-19 pandemic has had awidespread impact on all aspects
of people’s life in the last months. In particular, the education
domain has been affected in the United States due to school and
university closures and a subsequent move to online platforms. This
move, which in many circumstances occurred practically overnight,
has been a challenge to students, parents, and faculty. However, new
challenges have been directly connected with the pandemic itself.
University campuses became the new hot spots for COVID-19 in
the fall semester [6], because many schools are providing in-person
classes since August.
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In a study, “203 ‘college town’ counties where students comprise
at least 10% of the population found that about half had experienced
their worst weeks of the pandemic as students returned in August,
and about half of those were experiencing peak infections” in Sep-
tember [6, 22]. What are the attitudes displayed and emotions felt
by people in those towns, counties, and regions as they witness
directly new infection peaks?

Because of the social distance practice in the era of COVID-19,
social media platforms such as Twitter and Facebook can potentially
be a conduit of choice to express and share opinions, emotions, and
other life aspects related to the pandemic for those involved in
academic life and for citizens in general. In this paper our focus
is on Twitter. In fact, there is a wealth of millions of tweets with
different times, locations, and users, in what constitutes a stream
of snapshots throughout the pandemic, which we analyze in this
paper, following the lead of so many others who have analyzed
tweets in a variety of domains [3, 4, 7, 9, 10, 12, 13, 15, 16, 21, 23].

The emergence of Twitter brought important changes to how
health and urban information are discovered and transmitted.When
Twitter started in 2006, community health centers and healthcare
providers in Chicago were communicating flu cases by fax and New
York City had started their 3-1-1 call service for citizens to commu-
nicate non-emergency situations to local government, just three
years earlier. Nowadays, researchers and healthcare entities rely on
Twitter to detect flu trends and conduct disease surveillance [4, 9].
As for the communication of emerging urban situations, the 311
service can now be accessed via Twitter in many cities across the
U.S. and is recognized as an important citizen participation tool [5].
Because tweets have an associated time and often spatial infor-
mation, they lend themselves well to exploring the sentiments of
people in different regions as the disease evolves in time. In the case
of education, time and space are critical because different schools
may have different semester or quarter periods, henceforth named
terms, and distinct policy and regulations in each region or state.

Because tweets have an associated time and often spatial infor-
mation, they lend themselves well to exploring the sentiments of
people in different regions as disease evolves in time. In the case of
education, time and space are critical because different schools may
have different semester or quarter periods and distinct policy and
regulations, in each region or state. The IEEE data port [8] provides
a dataset of geotagged tweets including over 6 billions of COVID-19
related tweets up to now, 5% being education related worldwide.
We extracted two time periods of tweets in states across the U.S. as
follows. The former is from March to July including the spring and
first summer terms, and the latter from August 24 to September 5
covering either the first week or two of the fall term.

15

https://doi.org/10.1145/3423459.3430756
https://doi.org/10.1145/3423459.3430756


COVID-19, November 3, 2020, Seattle, WA, USA Zhu Wang and Isabel F. Cruz

In this paper, we collect and analyze at a large scale dataset of
geotagged tweets to explore the reactions of people to the COVID-
19 pandemic in the education domain, containing 673,601 tweets
in the above two time periods. We study the temporal and spatial
patterns and compare the density of tweets with the confirmed
COVID-19 cases at U.S. colleges and universities. Then, we conduct
content and sentiment analysis to discover which topics and which
thoughts people are communicating.

This paper is organized as follows. Section 2 introduces data col-
lection and pre-processing for our dataset. In Section 3, we demon-
strate the methods applied in this study, including spatio-temporal
patterns analysis, sentiment analysis, and content analysis. In Sec-
tion 4, we present briefly some of the existing techniques that
analyze social media (such as Yelp or Twitter). Then, we conclude
the paper and discuss future research in Section 5.

2 DATASET
In this section we describe our dataset and how we process the
dataset prior to the analytic steps.

2.1 Data collection
We use the Twitter API to hydrate tweets from the Coronavirus
dataset that are written in English and occur in the U.S. from March
to July and from August 24 to September 5. Also, we will be us-
ing tweets that are either geotagged or have otherwise associated
with them the users’ location, as provided by their profile, either
in location or description. Then, we select tweets related to the
education using a pre-defined keyword set: school, course, class,
student, teach, exam, educate, education, campus, university,
college, tuition, learn, study, quiz, midterm, homework, and
assignment. That is, if a tweet contains one or more words from
this set, they will be included in our study. Finally, we collected
560,780 tweets from March to July and 112,821 tweets from August
24 to September 5 from 265,654 users.

2.2 Pre-processing
We start by cleaning the dataset by organizing the geo-information,
for example, we add to the users’ displayed city or state information
regarding latitude and longitude or vice versa. We use the Google
Map API to get both the information on the coordinates and on the
cities.

Raw data from the text of the tweets are noisy, thus leading to
a sparse vector space and an increase in run time and storage. To
address this problem, the text pre-processing tasks involve several
steps: (1) standardizing the corpus to change all upper case let-
ters to lower cases, (2) removing non-English words, URLs, special
characters and stopwords, including the stopwords both from the
dictionary and from a personalized set, in our case common words
related to COVID-19, such as covid and virus, thus reducing the
sparsity of the vector space, (3) tokenizing sentences or less struc-
tured text into a word level corpus. The NLTK toolkit1 is used to
perform the pre-processing of the text.

1http://www.nltk.org/

3 METHODS
In this section, we introduce the explanatory data analysis we will
be performing in our study. First, we summarize the characteristics
of the Twitter users, which users state their roles as parents, stu-
dents, teachers or professors, and official accounts of the schools in
their profiles and tweets, while others are not specified (see Table 1).
Then, we study the spatio-temporal patterns of the tweets in our
dataset, such as their hourly distribution in different days and their
density and daily distributions in different states. Last, we study
deeply the texts in the tweets to classify users’ attitudes as positive
or negative in different regions, and to extract the topics that were
discussed on Twitter.

3.1 Spatio-temporal patterns
We explored the daily distribution of tweets in the various peri-
ods of the semesters from the different states, because we noticed
that different schools have different academic calendars. Next, we
display the hour distribution in each day of the week. Then, we
compare the density of tweets on the map with the COVID-19 col-
lege and university cases tracker using the subset of college and
university data.

Figures 1 and 2 show the different peaks of tweet counts in
various states. California, Texas, New York and Florida generated
the largest number of tweets in the two time periods. Each state has
a similar increasing/decreasing pattern over time. The first peak in
Figure 1 was around the start of the outbreak when many schools
began closing their campus and moving to online classes. Other
peaks in both periods correspond to the beginning and end of each
term.

Hourly tweet distributions are shown in Figures 3 and 4. Figure 3
is about the spring and summer terms from March to July and
Figure 4 is about the fall term. We converted the UTC time zone to
local time zone for each tweet according to the spatial information
given by the tweet. The interesting finding from the slight difference
between the two terms is that the percentage of tweets from 1am
to 3am in the spring term is larger than in the fall term, which we
explain based on the intense workload of the final weeks of the
term in comparison with the first couple of weeks in the fall term.

We extract the city and coordinate information of the tweets
corresponding to the locations of colleges and universities, and
display the volume of tweets on the U.S. map in Figure 5. According
to the New York Times, a large number of new confirmed cases
continues to emerge on college campuses [6, 22]. The Times pro-
vides an updated tracker map with the confirmed COVID-19 cases
in colleges and universities in Figure 6. We found that the location
distributions and density of tweets display a similar pattern to the
confirmed cases in our college map, which attest to the relationship

Table 1: Summary of users’ characteristics.

Roles Counts Percentage(%)

Parents 436 0.16
Student 141,568 53.29

Teacher/Professor 262 0.09
Official account 36 0.01
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Figure 1: State-level tweet counts from March to July in the 10 states that generate the largest counts.

Figure 2: State-level tweet counts from August 24 to September 5 in the 15 states generating the most tweets.

between intense reactions and confirmed cases. A better compar-
ison would be between the average of the number of cases per
person compared with the average of the number of tweets per per-
son. Otherwise one may wonder if the number of tweets is higher
because the density of the population is also higher. However, the

latter average is difficult to determine as a person may have dif-
ferent Twitter accounts and each person can post any number of
tweets even if only using one account.
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Figure 3: Hourly tweet counts in spring.

3.2 Sentiment analysis
People express their opinions about their daily life and events on
micro-blogs such as Twitter, therefore, leveraging sentiment analy-
sis of micro-blogs is beneficial to understand the users’ attitudes
towards the COVID-19 pandemic, and how it affects different do-
mains, in our case the education domain. In this study, we deploy a
dictionary based on sentiment method without having a ground
truth corpus available. The sentiment dictionary we use is the Lan-
guage Assessment by Mechanical Turk, labMT [3].

The polarity of a tweet, that is the emotion it expresses, can be
determined using the labMT dictionary, which provides a happiness
score for each word from 1 (sad) to 9 (happy). By computing the
numeric average of the happiness score of all the words in a tweet,
we determine its sentiment category as positive, neutral, or negative.
We examine the convergent validity of negative tweets against the
COVID-19 confirmed cases from colleges and universities. As a
result, the scores obtained using labMT correlate positively with
the confirmed positive cases with value 0.45.

Figure 7 illustrates the number of positive, neutral, and negative
tweets in the 15 states that have the largest number of confirmed
COVID-19 cases in colleges. Unexpectedly the number of positive
tweets exceeds, for all states, the number of neutral and the number
of negative tweets. In some states, the number of positive tweets
even exceeds the sum of the neutral and negative tweets. Since
we applied dictionaries to detect sentiment, a word like positive
is a strong indicator of a positive sentiment. It also happens to
be one of the words that contributes the most to the number of
positives tweets in Figure 7, even if the word positive appears

in positive cases or test result is positive, which are far
from expressing a positive sentiment.

Moreover, we observe the daily sentiment—positive, neutral, or
negative—using the percentage of the number of tweets for each
sentiment with respect to the total number of tweets in the first
time period—which is depicted in Figure 8. There are outliers in
the different periods. The first two peaks (high values) of negative
sentiment appear at the beginning of the pandemic when many
schools start cancelling classes. From July 18 to July 20, there is
an even higher negative peak. A possible explanation is that many
states went into reopening phase around these dates, but students
and faculty still did not feel safe to return to the campus.

To better understand the attitudes and opinions of users, we
list the 10 most frequent words in positive and negative tweets in
California and Illinois in Figures 9(a) and 9(b). There are many com-
mon words in these two states. The word debt appears frequently,
which seems to indicate that students are concerned with their
loans, since they need to pay the same tuition for online classes.
Indeed, there are many discussions about tuition and expenses.

3.3 Content analysis
In this section, to further understand the social and psychological
meaning associated with tweets, we use the Linguistic Inquiry and
Word Count (LIWC2015) dictionary [2] preceded by Latent Dirichlet
Allocation (LDA) [1] to infer coherent topics.

Since ground truth data are not available, we apply topic mod-
eling as an unsupervised probabilistic method to discover latent
topics. We treat the text of each tweet as a document to create
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Figure 4: Hourly tweet counts in fall.

Figure 5: Density of city-level tweets.

the corpus, and we apply lemmatization to improve the model per-
formance by keeping nouns, verbs, adjectives and adverbs. In this
study, we mainly focus on the education domain, so we have fewer
latent topics than a Twitter dataset that includes many other topics.
We determine the optimal number of topics, n, topic coherence, an

Figure 6: Colleges with confirmed COVID-19 cases [20].

important metric in LDA [11], with n = 4 yielding the highest co-
herence of 0.53. We examine the produced topics and the associated
keywords using the pyLDAvis package [18], which displays LDA re-
sults in an interactive chart, to verify that the discovered topics are
reasonable. In Figure 10, each circle represents a topic in the inter-
topic distance map. Our discovered topics are indeed reasonable
because the topic circles are fairly big and non-overlapping.

Table 2 shows a sample of the topic results containing the top
10 most probable words in each topic. Topics appear coherent even
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Figure 7: Sentiment analysis by state.

Figure 8: Daily sentiment in all states.

though some of words seem somewhat random, such as free and
today. Topic 1 contains K12 and high school related words, such
as kid, child and high, which appear in the group with high
probability scores assigned by LDA.

High-level education is discussed in Topic 2, so we infer that
college students are concerned with funding and tuition issues, as
already explained in Section 3.2.

To go beyond the classification of tweets as positive, neutral,
or negative, we use the 2015 Linguistic Inquiry and Word Count
(LIWC15) to link daily word use to psychologically meaningful cat-
egories [19]. LIWC is able “to show attention focus, emotion, social
relationships, thinking styles, and individual differences” [19]. We

call these categories language features, and concentrate on anxiety,
positive emotion, family, and friend (see Figure 11).

For each feature, r , the LIWC dictionary gives us a set of words
w1,w2, . . . ,w j associated with that feature. For example, the words
nervous, afraid, tense are a subset of the words associated
with anxiety [17]. We can compute the score of r for the corpus of
tweets T [2] in each region (for example, state, city), as an average:

score(r ) =
∑ |T |
k=1

stk
|tk |

|T | (1)
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(a) California (b) Illinois

Figure 9: Top sentiment words in California and Illinois.

Figure 10: Intertopic distance map of the LDA results as ob-
tained using pyLDAvis [18].

Table 2: Topics resulting from LDA.

Topic 1 Topic 2 Topic 3 Topic 4

school learn test case
go campus help time
get online even day
kid college change start
year classroom return see
take university reopen good
child job free feel
high tuition try share

teacher fund grow home
risk lab believe today

where |tk | is the number of words in tweet tk , and stk is the number
of occurrences of all the wordsw1,w2, . . . ,w j in tweet tk .

Figure 7 shows the language features at the state level. From
Figure 11(a), we conclude that the levels of anxiety of the people

in North Dakota and Maine are the highest in this study. A sam-
ple tweet says that Going #backtoschool can be stressful,
especially with the added uncertainty surrounding the
#COVID19 pandemic. However, Maine is also a state with relatively
high positive emotions as shown in Figure 11(b). The states with
many COVID-19 confirmed cases such as Georgia and North Car-
olina show less positive emotions. As shown in Figure 11(c), Maine
is also one of the states where tweets relate more to family while
North Dakota, as shown in Figure 11(d), is the state where tweets
relate more to friends. Overall, tweets seem to be more about family
than about friends as we compare the intensity of the color shades
in Figures 11(c) and 11(d) possibly as the result of stay at home
orders. For example, I stay at home with my family to take
online.

4 RELATEDWORK
In recent years, social media platforms have rapidly grown. Twitter
is one of the most important platforms and gives away significant
spatial and temporal information about the users and their posts.
Users express and share details about their life, including health
information and opinions on emerging events. For example, Twitter-
based approaches can be used to detect late breaking news [16] or
local news in spite of data scarcity [23]. The study of public health
using Twitter encompass health monitoring and surveillance for
early prediction of disease outbreaks. Dredze et al. [4] describe a
system, called Carmen, which utilizes geocoding tools for influenza
surveillance and considers geo-information from both tweets and
users. Lee et al. [9] have collected over 6 million of flu-related
tweets, with which they can analyze influenza rates in real time
using a novel flu surveillance system.

A system by Paul et al. [13], called Compass, applies neural net-
work methods for sentiment modeling and a dictionary for text
classification to capture democratic vs. republican sentiment for
the 2016 U.S. presidential election, at the county and state levels. A
study of neighborhood happiness, diet, and physical activity has
been performed by Nguyen et al. [12]. It applies sentiment analysis
to regions, namely neighborhoods, based on geotagged tweets and
socio-demographic characteristics, as provided by census data. Mar-
tinez et al. examine the use of and perceptions about e-cigarettes

21



COVID-19, November 3, 2020, Seattle, WA, USA Zhu Wang and Isabel F. Cruz

(a) Anxiety (b) Positive emotion

(c) Family (d) Friend

Figure 11: Language features.

in the U.S. [10]. They use a sample of tweets that they manually
geocoded and interpreted, which has the advantage of creating a
detailed categorization of the tweets.

Sadilek et al. [15] and Wang et al. [21] perform studies to detect
and predict foodborne illness using respectively Twitter and Yelp.
They analyze the tweets using language features and language
models. Zhao et al. [24] compared the content of Twitter with
a typical traditional news medium, the New York Times, using
unsupervised topic modeling. They develop a new Twitter-LDA
model that is effective for short tweets. Jaidka et al. [7] want to
monitor well-being at large scale. They find that text-basedmethods
that use language dictionaries including labMT and LIWC2015,
which we used, can easily work at a large scale. However, they
found that supervised data-driven methods are more robust, when
compared with a gold standard. Similarly to our paper, Paul and
Dredze [14] use an unsupervised model, in their case called Ailment
Topic Aspect Model (ATAM), and LDA to learn how users express
their illnesses and ailments in tweets.

5 CONCLUSIONS AND FUTUREWORK
While Twitter has been used to analyze and predict other diseases,
in the case of COVID-19, everything is new: the disease itself, its
extent, how it propagates and affects several sectors, including

education, and which emotions it brings out. Our large scale study
analyzes 673,601 tweets over two time periods in 2020.

Our study is about several aspects, including psychological cat-
egories [19], which capture emotion, social relationships, and in-
dividual differences. We analyze individual data, and aggregate
that information, as a function of time or of state. We illustrate the
impact of COVID-19 on education by means of spatio-temporal pat-
terns, sentiment and content analysis applied to a large geotagged
Twitter dataset, and capture the topics of greatest concern such
as funding and tuition. We found many similarities such as daily
tweet numbers (Figure 1) and common patterns such as sentiment
percentage in different states (Figure 7).

All in all, we converted a large dataset of tweets into meaningful
geospatial information. There are many interesting facts that can
be observed. We also verify the correlation of the results that are
obtained from sentiment analysis with the number of confirmed
positive cases.

As we mentioned in Section 3.2, there is ambiguity when we
encounter the word positive, which usually denotes a positive
sentiment. However, in the case of positive result, that tweet
is the opposite of being positive, while a negative result is great
news, and definitely positive. The problem arises because we use
bags of words. In future work, we will be looking at capturing better
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the semantics of such cases. It is to our advantage that tweets are
focused on COVID-19 only, thus limiting the number of possible
ambiguous word associations. Another possibility is to manually
label a random subset of tweets so as to apply machine learning
algorithms for sentiment analysis. At this time (October of 2020), it
seems that the pandemic will last several more months. If that is
the case, then we will have a baseline to compare results for 2021
with those we obtain in this paper.
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Abstract
Pandemic response is a complex affair. Most governments employ a
set of quasi-standard measures to fight COVID-19 including wear-
ing masks, social distancing, virus testing and contact tracing. We
argue that some non-trivial factors behind the varying effective-
ness of these measures are selfish decision-making and the differing
national implementations of the response mechanism.
In this paper, through simple games, we show the effect of individ-
ual incentives on the decisions made with respect to wearing masks
and social distancing, and how these may result in a sub-optimal
outcome. We also demonstrate the responsibility of national au-
thorities in designing these games properly regarding the chosen
policies and their influence on the preferred outcome. We promote
a mechanism design approach: it is in the best interest of every gov-
ernment to carefully balance social good and response costs when
implementing their respective pandemic response mechanism.
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1 Introduction
The current coronavirus pandemic is pushing individuals, busi-
nesses and governments to the limit. People suffer owing to re-
stricted mobility, social life and income, complete business sectors
face an almost 100% drop in revenue, and governments are scram-
bling to find out when and how to impose and remove restrictions.
In fact, COVID-19 has turned the whole planet into a “living lab” for
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human and social behavior where feedback on response measures
employed is only delayed by around two weeks (the incubation
period). From the 24/7 media coverage, all of us have been intro-
duced to a set of quasi-standard measures introduced by national
and local authorities, including wearing masks, social distancing,
virus testing, contact tracing and so on. It is also clear that differ-
ent countries have had different levels of success employing these
measures as evidenced by the varying normalized death tolls and
confirmed cases1.

We believe that apart from the intuitive (e.g., genetic differences,
medical infrastructure availability, hesitancy, etc.), there are two
significant factors that have not received enough attention. First,
the individual incentives of citizens, e.g., “is it worth more for me to
stay home than to meet my friend?”, have a significant say in every
decision situation. While some of those incentives can be inherent
to personality type, clearly, there is a non-negligible rational aspect
to it, where individuals are looking to maximize their own utility.
Second, countries have differed in their specific implementation of
response measures, e.g., whether they have been distributing free
masks (affecting the efficacy of mask wearing in case of equipment
shortage) or providing extra unemployment benefits (affecting the
likelihood of proper self-imposed social distancing). Framing pan-
demic response as a mechanism design problem, i.e., architecting a
complex response mechanism with a preferred outcome in mind,
can shed light on these factors; what’s more, it has the potential
to help authorities (mechanism designers) fight the pandemic effi-
ciently. The objective of this paper is to show that both individual
incentives and the actual design and implementation of the holistic
pandemic response mechanism can have a major effect on how this
pandemic plays out.
Contribution. In this paper we model decision situations during a
pandemic with game theory where participants are rational, and
the proper design of the games could be the difference between
life and death. Our main contribution is two-fold. First, regarding
decisions on wearing a mask, we show that i) the equilibrium out-
come is not socially optimal under full information, ii) when the
status of the players are unknown the equilibrium is not to wear
a mask for a wide range of parameters, and iii) when facing an
infectious player it is almost always optimal to wear a mask even
with low protection efficiency. Furthermore, for social distancing,
using current COVID-19 statistics we showed that i) going out is
only rational when it corresponds to either a huge benefit or stay-
ing home results in a significant loss, and ii) we determined the
optimal duration and meeting size of such an out-of-home activity.
Second, we take a look at pandemic response from a mechanism
design perspective, and demonstrate that i) different government

1Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html
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policies influence the outcome of these games profoundly, and ii)
individual response measures (sub-mechanisms) are interdepen-
dent. Specifically, we discuss how contact tracing enables targeted
testing which in turn reduces the uncertainty in individual decision
making regarding both social distancing and wearing masks. We
recommend governments treat pandemic response as a mechanism
design problem when weighing response costs vs. the social good.

Organization. The remaining of the paper is structured as follows.
Section 2 briefly describes related work while Section 3 recaps some
basics of game theory. Section 4 develops and analyzes the Mask
Game adding uncertainty, mask efficiency and multiple players to
the basic model. Section 5 develops and analyzes the Distancing
Game including the effects of meeting duration and size. Section 6
frames pandemic response as a mechanism design problem using
the design of the two games previously introduced as examples.
Finally, Section 7 outlines future work and concludes the paper.

2 Related Work
In this section we review some well-known epidemic spreading
models and game-theoretic works in relation to pandemics.

COVID-19 have been modelled using different models: for in-
stance using SIR [4], SEIQR [28], and SIDARTHE [12]. Which model
suits the ongoing epidemic best is still undetermined. Besides the
model, the input data instantiating the model may be imperfect
as well, thus some efforts are also made to account for potential
inaccuracies in the reported data [14]. An orthogonal extension
of these models is proposed in [23], which discusses how factors
such as hospital capacity, test capacity, demographics, population
density, vulnerable people and income could be integrated into
these models. In contrast with the previous models, the one in [16]
takes into consideration the networked structure of human inter-
connections and the locality of interactions, without attempting
a mean-field approach. In the following we briefly review some
related research efforts in the intersection of epidemics and game
theory. For a comprehensive survey we refer the reader to [5].

Some researchers modeled the behavioral changes of people to
a pandemic: for instance in [21] authors used evolutionary game
theory, and showed that slightly reducing the number of people
an individual was in contact with could make a difference regard-
ing the spread of disease. Another group showed that there was a
critical level of concern, i.e., empathy, by the infected individuals
above which the disease is eradicated rapidly [9]. Others focused
on the mobility habits of people traveling between areas affected
unevenly by the disease, and found conflict between the Nash Equi-
librium (individually optimal strategy) and the Social Optimum
(optimal group strategy) only under specific changes in economic
and epidemiological conditions [29]. In [1] an optimization prob-
lem was formalized by accommodating both isolation (modeled by
how far individuals are from home) and social distancing (how far
individuals are from each other). Authors also provided incentives
for maintaining social distancing to prevent the spread of COVID-
19 (i.e., making “staying home” the Nash Equilibrium). Moreover,
social distancing was also shown to be able to delay the epidemic
until a vaccine becomes widely available [22].

Several studies focused on how the availability of vaccines affects
human behaviour. A model was introduced in [3] where vaccine

delayers relied on herd immunity and vaccine safety information
generated by early vaccinators. Consequently, the Nash Equilib-
rium was “wait and see”. Another study concerning this vaccina-
tion dilemma proposed a model with incentives for individuals to
choose the prevention strategy according to risks and expenses in
the epidemic campaign [2]. Similarly, researchers in [27] showed
the optimal use of anti-viral treatment by individuals when they
took into account the direct and indirect costs of treatment. The
game-theoretic model in [25] focused on the various level of drug
stockpiles in different countries, and found controversial results:
sometimes there was an optimal solution with a central planner
(such as the WHO), which improved on the decentralized equilib-
rium, but other times the central planner’s solution (minimizing
the number of infected persons globally) required some countries
to sacrifice part of their population.

The exact dynamics of demand and supply for medical resources
at different phases of a pandemic was also studied [7]. Predicting
such dynamics would provide a quantitative basis for mechanism
designers (e.g., decision makers of healthcare systems) to under-
stand the potential imbalance of supply and demand. The authors
extended the concepts of reserving and capital management in the
classical insurance literature and aimed to provide a quantitative
framework for quantifying and assessing pandemic risk, and devel-
oped optimal strategies for stockpiling spatio-temporal resources.

The Centers for Disease Control and Prevention created a policy
review of social distancing measures for pandemic influenza in
non-healthcare settings [11]. They identified measures to reduce
community influenza transmission such as isolating the sick, tracing
contacts, quarantining exposed people, closing down school, chang-
ing workplace habits, avoiding crowds, and restricting movement.
The impact of several of these (and wearing masks) was studied in
[24] in which the authors model the pandemic by emulating people,
business and government. Other researchers demonstrated that
early school and workplace closure, and restriction of international
travel are independently associated with reduced national COVID-
19 mortality [20]. On the other hand, lock-down procedures could
have devastating impact on the economy. This was studied in [6]
with a modified SIR model and time-dependent infection rate. The
authors found that, surprisingly, in spite of the economic cost of
the loss of workforce and incurred medical expenses, the optimum
point for the entire course of the pandemic is to keep the strict
lock-down as long as possible.

As detailed above, related work has mostly studied narrowly
focused specifics of epidemic modelling such as the intricate be-
haviour of individuals in relation with vaccines or the preferred
actions of mechanism designers such as healthcare system oper-
ators. In contrast, our work takes a step back, and focuses on the
big picture: we model decision situations during a pandemic as
games with rational participants, and promote the proper design
of these games. We highlight the responsibility of mechanism de-
signers such as national authorities in constructing these games
properly with adequately chosen policies, taking into account their
interdependent nature.
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3 Preliminaries
In this section we shortly elaborate on the main game theoretical
notions used in this paper, to enable the conceptual understanding
of the implications of our results.

Game theory [13] is “the study ofmathematical models of conflict
between intelligent, rational decision-makers”. Almost every multi-
party interaction can be modeled as a game. In relation to COVID-
19, decision makers could be individuals (e.g., whether to wear a
mask), cities (e.g., whether to enforce wide-range testing within
the city), governments (e.g., whether to apply contact tracking
within the country), or companies (e.g., whether to apply social
distancing within the workplace). Potential decisions are referred
to as strategies; decision makers (players) choose their strategies
rationally so as to maximize their own utility.

The Nash Equilibrium (NE) — arguably the most famous solution
concept — is a set of strategies where each player’s strategy is a best
response strategy. This means every player makes the best/optimal
decision for itself as long as the others’ choices remain unchanged.
NE provides a way of predicting what will happen if several entities
are making decisions at the same time where the outcome also
depends on the decisions of the others. The existence of a NE means
that no player will gain more by unilaterally changing its strategy
at this unique state. Another game-theoretic concept is the Social
Optimum, which is a set of strategies that maximizes social welfare.
Note, that despite the fact that no one can do better by changing
strategy, NEs are not necessarily Social Optima (we refer the reader
to the famous example of the Prisoner’s Dilemma [13]). In fact, it is
a central problem in game theory how much a distributed outcome
(NE) is worse than a centrally planed social optimum.

If one knows the NE they prefer as the outcome of a game, e.g.,
everybody wearing a mask, and they have the power to instantiate
the game accordingly, i.e., fixing the structure, game flow and any
free parameters, then we talk about mechanism design [17]. In a
way, mechanism design is the inverse of game theory; although
a significant share of efforts within this field deals with auctions,
mechanism design is a much broader term widely applicable to any
mechanism, e.g., optimal organ matching for transplantation or
school-student allocation, aimed at achieving a given steady state
result.

4 The Mask Game
Probably the most visible consequence of COVID-19 are masks:
before their usage was mostly limited to some Asian countries,
hospitals, constructions and banks (in case of a robbery). Due to
the coronavirus pandemic, an unprecedented spreading of mask-
wearing can be seen around the globe. Policies have been imple-
mented to enforce their usage in some places, but in general, it has
been up to the individuals to decide whether to wear a mask or
not based on their own risk assessment. In this section, we model
this decision situation via game theory. We assume that there are
several types of masks, providing different level of protection.

• No Mask corresponds to the behavior of using no masks
during the COVID-19 (or any) pandemic. Its cost is conse-
quently 0; however, it does not offer any protection against
the virus.

• Out Mask is the most widely used mask (e.g., cloth mask or
surgical mask). They are meant to protect the environment
of the individual using it. They work by filtering out droplets
when coughing, sneezing or simply talking, therefore they
limit the spreading of the virus. They do not protect the
wearer itself against an airborne virus. The cost of deciding
for this protection type is noted as 𝐶𝑜𝑢𝑡 > 0.

• In Mask is the most protective prevention gear designed for
medical professionals (e.g., FFP2 or FFP3 mask with valves).
Valves make it easier to wear the mask for a sustained pe-
riod of time, and prevent condensation inside the mask.
They filter out airborne viruses while breathing in, how-
ever the valved design means they do not filter the while air
breathing out. Note that CDC guidelines2 recommend using
a cloth/surgical mask for the general public, while valved
masks are only recommended for medical personnel in direct
contact with infected individuals. The cost of this protection
type is 𝐶𝑖𝑛 >> 𝐶𝑜𝑢𝑡 .

Besides which mask they use (i.e., the available strategies), the
players are either susceptible or infected3. The latter has some
undesired consequence; hence, we model it by adding a cost 𝐶𝑖 to
these players’ utility (which is magnitudes higher than even 𝐶𝑖𝑛 ,
i.e., 𝐶𝑖 >> 𝐶𝑖𝑛 >> 𝐶𝑜𝑢𝑡 ). We summarize all the parameters and
variables used for the Mask game in Table 1.

Variable Meaning
𝐶𝑜𝑢𝑡 Cost of playing out
𝐶𝑖𝑛 Cost of playing in
𝐶𝑖 Cost of being infected
𝐶𝑢𝑠𝑒 Cost of playing use
𝜌 Prob. of being infected
𝑝 Prob. of using a mask
𝑎 Protection Efficiency
𝑏 Spreading Efficiency

Table 1: Parameters of the Mask Games

Using these states and masks, we can present the basic game’s
payoffs where two players with known health status meet and
decide which mask to use. The payoff matrix in Table 2 corresponds
to the case when both players are susceptible. Note, that in case
both players are infected, the payoff matrix would be the same with
an additional constant 𝐶𝑖 . Table 3 corresponds to the case when
one player is infected while the other is susceptible.

no out in
no (0, 0) (0,𝐶𝑜𝑢𝑡 ) (0,𝐶𝑖𝑛)
out (𝐶𝑜𝑢𝑡 , 0) (𝐶𝑜𝑢𝑡 ,𝐶𝑜𝑢𝑡 ) (𝐶𝑜𝑢𝑡 ,𝐶𝑖𝑛)
in (𝐶𝑖𝑛, 0) (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 ) (𝐶𝑖𝑛,𝐶𝑖𝑛)

Table 2: Payoff matrices when both players are susceptible

2Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-
ncov/prevent-getting-sick/prevention.html
3We simplify the well-known SIR model [8] since in case of COVID-19 it is currently
unclear if and for how long an individual is resistant after recovery.
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In Table 2 it is visible that both players’ cost is minimal when
they do not use any masks, i.e., the Nash Equilibrium of the game
when both players are susceptible is (no, no). This is also the social
optimum, meaning that the players’ aggregated cost is minimal.
The same holds in case both players are infected, as this only adds
a constant 𝐶𝑖 to the payoff matrix.

no out in
no (𝐶𝑖 ,𝐶𝑖 ) (0,𝐶𝑜𝑢𝑡 +𝐶𝑖 ) (𝐶𝑖 ,𝐶𝑖𝑛 +𝐶𝑖 )
out (𝐶𝑜𝑢𝑡 +𝐶𝑖 ,𝐶𝑖 ) (𝐶𝑜𝑢𝑡 ,𝐶𝑜𝑢𝑡 +𝐶𝑖 ) (𝐶𝑜𝑢𝑡 +𝐶𝑖 ,𝐶𝑖𝑛 +𝐶𝑖 )
in (𝐶𝑖𝑛,𝐶𝑖 ) (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 +𝐶𝑖 ) (𝐶𝑖𝑛,𝐶𝑖𝑛 +𝐶𝑖 )

Table 3: Payoff matrices for the cases when only one player
is susceptible.

When only one of the players is susceptible as represented in
Table 3, using no mask is a dominant strategy for the infected
player4, since it is a best response, independently of the susceptible
player’s action. Consequently, the best option for the susceptible
player is in, i.e., the NE is (in, no). On the other hand, the social
optimum is different: (no,out) would incur the least burden on the
society since 𝐶𝑜𝑢𝑡 << 𝐶𝑖𝑛 .

In social optimum, susceptible players would benefit, through
a positive externality, from an action that would impose a cost on
infected players; therefore it is not a likely outcome. In fact, such
a setting is common in man-made distributed systems, especially
in the context of cybersecurity. A well-fitting parallel is defense
against Distributed Denial of Service Attacks (DDoS) attacks [15]:
although it would be much more efficient to filter malicious traffic
at the source (i.e., out), Internet Service Providers rather filter at
the target (i.e., in) owing to a rational fear of free-riding by others.

4.1 Bayesian Game
Since in the basic game no player plays out, we simplify the choice
of the players to either use a mask or no (hence, we note the cost of
a mask with 𝐶𝑢𝑠𝑒 ). To represent the situation more realistically, we
introduce ambiguity about the status of the players: we denote the
probability of being infected as 𝜌 . We know from the basic game
that if both players are infected (with probability 𝜌2) or susceptible
(with probability (1 − 𝜌)2) they play (no,no), while if only one of
them is infected (with probability 2 · 𝜌 · (1− 𝜌)) the infected player
plays no, while the susceptible plays use. Hence, the players play
no in most of the cases (e.g., with probability 1 − (𝜌 · (1 − 𝜌))).

On the other hand, this is not the case if we do not assume that
the players know their statuses. Consequently, with uncertainty we
must minimize the costs of the players: if both players are infected
with equal probability, the payoff for Player 2 is Equation 1 where
𝑝𝑛 is the probability that Player n plays use (otherwise she plays
no). The payoff for the other player is similar since the game is
symmetric. In more detail, the first two lines correspond to the case
when Player 2 is not infected (hence the multiplication with 1 − 𝜌

at the beginning), while the last line captures when she is infected.
Either way, she plays use with probability 𝑝2, which incurs a cost
4Note that the payoffs does not take into account the legal consequences of a delib-
erate infection such as in https://www.theverge.com/2020/4/7/21211992/coughing-
coronavirus-arrest-hiv-public-health-safety-crime-spread.

of 𝐶𝑢𝑠𝑒 . Otherwise she plays no, which has no cost except when
Player 1 is infected and she plays no as well.

𝑈2 = (1 − 𝜌) · [(1 − 𝜌) · [𝑝2 ·𝐶𝑢𝑠𝑒 + (1 − 𝑝2) · 0]+
𝜌 · [𝑝2 ·𝐶𝑢𝑠𝑒 + (1 − 𝑝2) · [(1 − 𝑝1) ·𝐶𝑖 + 𝑝1 · 0]]]+

𝜌 · [𝑝2 · (𝐶𝑖 +𝐶𝑢𝑠𝑒 ) + (1 − 𝑝2) ·𝐶𝑖 ]
(1)

Since this formula is linear in 𝑝2, its extreme point within [0,1] is
situated exactly at the boundary. We take its derivative to uncover
the function steepness: the condition for the function to be decreas-
ing (i.e., higher probability for using a mask corresponds to lower
cost) is seen below. Consequently, the only scenario which might
admit wearing a mask with non-zero probability corresponds to
the availability of sufficiently cheap masks.

𝜕𝑈2

𝜕𝑝2
< 0 ⇔ 𝐶𝑢𝑠𝑒

𝐶𝑖
< 𝜌 · (1 − 𝜌) · (1 − 𝑝1) ≤ 1 (2)

Example. Lets assume Alice is going to meet Bob after a long time
without any correspondence. Consequently, she does not know
whether Bob has been exposed to SARS-CoV-2 recently. Actually,
Alice herself could have been exposed as well without her knowl-
edge, as up to 80% of the infectious cases could be asymptomatic.5
For this reason, without taking into account any available spatial
data, she estimates that they could be infectious with 𝜌 = 50%:
either yes or no. She also does not have any information about
Bob’s mask wearing habits, so she guesses 𝑝1 = 0.5 as well.

Alice is tested at her workplace every day, and she is sent to a 1-
week quarantine without payment if tested positive. If we represent
Alice as an average American, she earns approximately 1000 USD
per week6, hence, we set 𝐶𝑖 = 1000. Substituting these into the
right side of Equation (2), she decides to wear a mask only if it costs
less than 125 USD, which does hold as of September 2020.

4.2 Efficiency Game
In the basic game we assumed in provides perfect protection from
infected players, while out protects the other player fully. How-
ever, in real life, these strategies only mitigate the infection by
decreasing its probability (i.e., 𝜌) to some extent. For this reason,
we define 𝑎, 𝑏 ∈ [0, 1] in a way that the smaller value of the param-
eter corresponds to better protection; 𝑎 measures the protection
efficiency of the protection strategy, while 𝑏 captures the efficiency
of eliminating the further spread of the disease. Consequently, 𝑎
and 𝑏 was set in the previous cases to 𝑎out = 0, 𝑎in = 1 (in prevents
further spreading, while out does not), 𝑏out = 1 (out has no effect
on protecting the player) 𝑏in = 0 (in perfectly protects the player).

We simplify the action space of the players as we did in the
Bayesian game: in and out is merged into use Obviously, no corre-
sponds to 𝑎𝑛𝑜 = 𝑏𝑛𝑜 = 0. We abuse the notion 𝑎 and 𝑏 to represent
𝑎𝑢𝑠𝑒 and 𝑏𝑢𝑠𝑒 respectively. We set 𝑏 = 2

3 , as surgical masks on
the infectious person reduce cold & flu viruses in aerosols by 70%
according to [19]. Parameter 𝑎 is much harder to measure. It should
be 𝑎 ≤ 𝑏 since any mask keeps the virus inside the players more
efficiently than stopping the wearer from getting infected. For the

5Centre for Evidence-Based Medicine. https://www.cebm.net/covid-19/covid-19-what-
proportion-are-asymptomatic/
6Bureau of Labour Statistics. https://www.bls.gov/news.release/pdf/wkyeng.pdf
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sake of the analysis we set 𝑎 = 𝑏
2 = 1

3 , but any other choice would
be possible.

We are interested in the mask-wearing probability of a suscepti-
ble player when the other player is infected.7 The utility in such a
situation is shown in Equation (3), where for simplification we de-
fined 𝑝 = 𝑝1 = 𝑝2, i.e., both players play a specific strategy with the
same probability. With such a constraint, we restrict ourselves from
finding all the solutions; however, since the game is symmetric, an
equilibrium of this reduced game is also an equilibrium when the
players could use different strategy distributions.

𝑈 =𝑝2 · (𝐶𝑢𝑠𝑒 +𝐶𝑖 · 𝑎 · 𝑏)+
𝑝 · (1 − 𝑝) · (𝐶𝑢𝑠𝑒 +𝐶𝑖 · 𝑎)+
(1 − 𝑝) · 𝑝 · (𝐶𝑖 · 𝑏)+
(1 − 𝑝)2 ·𝐶𝑖

⇒ 𝑈 =𝑝2 · (𝐶𝑢𝑠𝑒 +𝐶𝑖 · 0. ¤2)+
𝑝 · (1 − 𝑝) · (𝐶𝑢𝑠𝑒 +𝐶𝑖 )+
(1 − 𝑝)2 ·𝐶𝑖

(3)

From this we easily deduce that use corresponds to a smaller
cost that no if 𝐶𝑢𝑠𝑒

𝐶𝑖
< 7

9 , which holds by default as 𝐶𝑢𝑠𝑒 ≪ 𝐶𝑖

(even for less efficient masks). Moreover, use (i.e., 𝑝 = 1) is the best
response most of the time because of the following.

(1) The utility is a second order polynomial, hence it has one
extreme point.

(2) This extreme point is a minimum due to 𝑈 ′′ = 4
9 ·𝐶𝑖 > 0.

(3) The utility (i.e., cost) is decreasing on the left and increasing
on the right of this minimum point.

(4) The utility’s minimum point is at 𝑝 = 9
4 · 𝐶𝑖−𝐶𝑢𝑠𝑒

𝐶𝑖
due to

𝑈 ′ = 𝐶𝑢𝑠𝑒 −𝐶𝑖 + 4
9 ·𝐶𝑖 · 𝑝 .

(5) The minimum point is expected to be above 1 due to𝐶𝑢𝑠𝑒 ≪
𝐶𝑖 .

(6) 𝑝 ∈ [0, 1] is on the left of the minimum point, hence, a higher
𝑝 corresponds to a smaller cost.

4.3 Multi-Player Game
This game can be further extended by allowing more players to
participate. In this extension — if we assume all players meet with
probability 1 — with any number of infected players (who play
no as we showed already) all the susceptible players should play
in. This NE is the SO as well if the ratio of the infected (which is
identical to the probability 𝜌 of being infected) is sufficiently high:
the accumulated cost when the susceptible players play in (and
the infected play no) is less than the accumulated cost when the
infected players play out (and the susceptible play no) if 𝐶𝑖𝑛

𝐶𝑜𝑢𝑡
<

𝜌
1−𝜌 . Although it is mathematically possible that the infected plays
no in the SO, but it is doubtful: both the cost of in is significantly
higher than out, and the infection ratio 𝜌 is low (at least at the
beginning of the pandemic).

7The Bayesian game combined with efficiency is left for future work due to the lack of
space.

5 The Distancing Game
Another phenomenon most people has experienced during the
current COVID-19 pandemic is social distancing. Here we introduce
a simple Distancing Game; it is to be played in sequence with the
previously introduced Mask Game: once a player decided to meet
up with friends via the Distancing Game, she can decide whether to
wear a mask for the meeting playing the Mask Game. To improve
readability, we summarize all the corresponding parameters and
variables in Table 4.

Variable Meaning
𝐶 Cost of staying home
𝐵 Benefit of going out
𝑚 Mortality rate
𝐿 Value of Life
𝜌 Probability of infection
𝑝 Probability of meeting
𝑡 Time duration of meeting
𝑔 Group size of meeting

Table 4: Parameters of the Distancing Games

We represent the cost of getting infected with 𝑚 · 𝐿, i.e., the
mortality rate of the disease multiplied with the player’s evaluation
about her own life.8 Besides the risk of getting infected, going out
or attending a meeting could benefit the player, denoted as 𝐵. On
the other hand, staying home or missing a meeting could have
some additional costs, denoted as 𝐶 . The probability of getting
infected is denoted as 𝜌 . With these notations, the utility of the
Distancing Game is captured on the left of Equation (4), where 𝑝 is
the probability of going out. Since this is linear in 𝑝 , its maximum
is either at 𝑝 = 0 (stay home) or 𝑝 = 1 (go out). Precisely, the player
prefers to stay home if the right side of Equation (4) holds.

𝑈 = 𝑝 · (𝐵 − 𝜌 ·𝑚 · 𝐿) − (1 − 𝑝) ·𝐶 𝐵 +𝐶
𝜌 ·𝑚 < 𝐿 (4)

Example. For instance, should a rational American citizen (e.g.,
Alice) go out based on how much she values her life? We esti-
mate9 𝑚 = 0.034 and 𝜌 = 0.0077 as 0.028 ≈ #{deceased}

#{all cases} < 𝑚 <

#{deceased}
#{closed cases} ≈ 0.04 while #{active cases}

#{population} ≈ 0.0077.
Using these values, Alice should go out only if she values her life

less than 3820(= 1
0.034·0.0077 ) times the benefit (of going out) and

the loss (of staying home) together. According to [26], the value
of a statistical life in the US was 9.2 million USD in 2013, which is
equivalent to 11.3 million USD in 2020 (with 0.3% interest rate).
This means, Alice should only meet someone if the benefit of the
meeting (and thus the cost of missing out) would amount to more
than USD 2, 958 (= 11.3𝑀

3820 ).

5.1 Number of Participants and Duration
One way to improve the above model is by introducing meeting
duration and size. Leaving our disinfected home during a pandemic
8This is an optimistic approximation, as besides dying the infection could bear other
tolls on a player.
9Data from https://www.worldometers.info/coronavirus/ (accessed September 2020)
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Figure 1: A few examples for various benefit and cost functions of the lower limit on the life value which would ensure that
Alice (i.e., a rational American) would stay home (i.e.,left side of Equation (5)) with𝑚 = 0.034 and 𝜌 = 0.0077.

is risky, and this risk grows with the time. Similarly, a meeting is
riskier when there are multiple participants involved. In the original
model, we captured the infection probability with 𝜌 = 1 − (1 − 𝜌).
This ratio increases to 1 − (1 − 𝜌)𝑔 ·𝑡 when there are 𝑔 possible
infectious sources for 𝑡 time. Since 𝑔 and 𝑡 are interchangeable, we
merge this two together under a common notation: 𝑧 = 𝑔 · 𝑡 .

This extended model can be used to determine the optimal du-
ration and size of a meeting, once the player decided to go out
according to the basic Distancing Game. We define 0 < 𝑧 < 100,
as no player has infinite time or meeting partners. Moreover, the
benefit and the loss of attending and missing a meeting should de-
pend on this new parameter. For instance, staying home in isolation
for a longer period might cause anxiety, which could get worse
over time (i.e., increasing the cost); on the other hand, attending
a meeting with many friends at the same time could significantly
boost the experience (i.e., increase the benefit). Consequently, a
rational person should leave her home only if Equation (5) holds
which is the extension of the right side of Equation (4).

max
0<𝑧<100

(
𝐵(𝑧) +𝐶 (𝑧)

(1 − (1 − 𝜌)𝑧) ·𝑚

)
< 𝐿 (5)

In Figure 1, we present three use-cases of the formula inside the
maximization above: the left one represents the case when both the
benefit and the cost are constant, the right one corresponds to the
case when both of them are linear. In the middle, there is a mixture
of these two. Note that we needed to restrict 𝑧 to be under a certain
amount as it represents both the time and the size of a meeting.

6 Pandemic Mechanism Design
Pandemic response is a complex affair. The two games described
above model only parts of the bigger picture.

6.1 The government as mechanism designer
We refer to the collection (and interplay) of measures implemented
by a specific government fighting the epidemic in their respective
country asmechanism. Consequently, decisionsmadewith regard to
this mechanism constitutesmechanism design [17]. In its broader in-
terpretation, mechanism design theory seeks to study mechanisms
achieving a particular preferred outcome. Desirable outcomes are
usually optimal either from a social aspect or maximizing a different
objective function of the designer.

In the context of the corona pandemic, the immediate response
mechanism is composed of e.g., wearing a mask, social distanc-
ing, testing and contact tracing, among others. Note that this is
not an exhaustive list: financial aid, creating extra jobs to accom-
modate people who have just lost their jobs, declaring a national
emergency and many other conceptual vessels can be utilized as
sub-mechanisms by the mechanism designer, i.e., usually, the gov-
ernment; we do not discuss all of these in detail due to the lack of
space. Instead, we shed light on how government policy can affect
the sub-mechanisms, how sub-mechanisms can affect each other
and, finally, the outcome of the mechanism itself. We illustrate the
importance of mechanism design applying different policies to our
two games, and adding testing and contact tracing to the mix.

6.2 Policy impact on sub-mechanisms and the
final mechanism

Here we analyze the impact of commonly seen policies: compul-
sory mask wearing, distributing free masks, limiting the amount of
people gathering and total lock-down.

Compulsory mask wearing and free masks. If the government de-
clares that wearing a simple mask is mandatory in public spaces
(such as shops, mass transit, etc.), it can enforce an outcome (out,out)
that is indeed socially better than the NE. The resulting strategy
profile is still not SO, but it i) allocates costs equally among citizens;
ii) works well under the uncertainty of one’s health status; and iii)
may decrease the first-order need for large-scale testing, which in
turn reduces the response cost of the government. By distributing
free masks, the government can reduce the effect of selfishness and,
potentially, help citizens who cannot buy or afford masks owing to
supply shortage or unemployment.

Limiting the amount of people gathering and total lock-down. If the
government imposes an upper limit 𝑙 for the size of congregations,
this will put a strict upper bound on the “optimal meeting size” 𝑔∗,
and the resulting group size will bemin(𝑙, 𝑔∗). Note that if 𝑙 < 𝑔∗

then it creates an “opportunity” for longer meetings (larger 𝑡 ), as
Equation (5) maximizes for 𝑧 = 𝑔𝑡 . On the other hand, if the chosen
restrictive measure is a total lock-down, both the Distancing Game
and the Mask Game are rendered moot, as people are not allowed
to leave their households.

Testing and contact tracing. It is clear that the Distancing and the
Mask Games are not played in isolation: people deciding to meet up
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Figure 2: Pandemic response mechanism as influenced by government policy (dotted lines) and the interplay of sub-
mechanisms (solid lines)

invoke the decision situation on mask wearing. On the other hand,
so far we have largely ignored two other widespread pandemic
response measures: testing and contact tracing.

With appropriately designed and administered coronavirus tests,
medical personnel can determine two distinct features of the tested
individual: i) whether she is actively infected spreading the virus
and ii) whether she has already had the virus, even if there were no
or weak symptoms. (Note that detecting these two features require
different types of tests, able to show the presence of either the virus
RNA or specific antibodies, respectively.) In general, testing enables
both the tested person and the authorities to make more informed
decisions. Putting this into the context of our games, testing i)
reduces the uncertainty in Bayesian decisionmaking, and ii) enables
the government to impose mandatory quarantine thereby removing
infected players. Even more impactful, mandatory testing (as in
Wuhan10) completely eliminates the Bayesian aspect, essentially
rendering the situation to a full information game: it serves as
an exogenous “health oracle” imposing no monetary cost on the
players. To sum it up, the testing sub-mechanism outputs results
that serve as inputs to both the Distancing and the Mask Game.

Naturally, a “health oracle” does not exist: someone has to bear
the costs of testing. From the government’s perspective, mandatory
mass testing is extremely expensive11. (Similarly, from the con-
cerned individual’s perspective, a single test could be unaffordable.)
Contact tracing, whether traditional or mobile app-based, serves
as an important input sub-mechanism to testing [10]. It identifies
the individuals who are likely affected based on spatial proximity,
and inform both them and the authorities about this fact. In game-
theoretic terms, for such players, the benefit of testing outweigh
the cost (per capita) with high probability. From the mechanism
designer’s point of view, contact tracing reduces the overall testing
cost by enabling targeted testing, potentially by orders of magni-
tude, without sacrificing proper control of the pandemic. Another
potential cost of contact tracing for individuals could be the loss
of privacy. Note that mobile OS manufacturers are working on

10New York Times. https://www.nytimes.com/2020/05/26/world/asia/coronavirus-
wuhan-tests.html
11But not without precedence, e.g., in Slovakia (https://edition.cnn.com/world/live-
news/coronavirus-pandemic-10-18-20-intl/h_beb93495fe9b83701023eafd5f28e39d)

integrating privacy-preserving contact tracing into their platform
to eliminate adoption costs for installing an app12.
The big picture. As far as pandemic response goes, the mechanism
designer has the power to design and parametrize the games that
citizens are playing, taking into account that sub-mechanisms affect
each other. After games have been played and outcomes have been
determined, the cost for the mechanism designer itself are realized
(see Figure 2). This cost function is very complex incorporating
factors from ICU beds through civil unrest to a drop in GDP over
multiple time scales [18]. Therefore, governments have to carefully
balance the – very directly interpreted – social optimum and their
own costs; this indeed requires a mechanism design mindset.

7 Conclusion
In this paper we have made a case for treating pandemic response
as a mechanism design problem. Through simple games modeling
interacting selfish individuals we have shown that it is necessary to
take individual incentives into account during a pandemic. We have
also demonstrated that specific government policies significantly
influence the outcome of these games, and how different response
measures (sub-mechanisms) are interdependent. As an example we
have discussed how contact tracing enables targeted testing which
in turn reduces the uncertainty from individual decision making
regarding social distancing and wearing masks. Governments have
significantly more power than traditional mechanism designers in
distributed systems; therefore it is even more crucial for them to
carefully study the tradeoff between social good and the cost of the
designer when implementing their pandemic response mechanism.
Limitations and future work. Clearly, we have just scratched the
surface of pandemic mechanism design. The models presented are
simple and mostly used for demonstrative purposes. Also, the mech-
anism design considerations are only quasi-quantitative without
proper formal mathematical treatment. In turn, this gives us plenty
of opportunity for future work. A potential avenue is extending
our models to capture the temporal aspect, combine them with
epidemic models as games played by many agents on social graphs,
and parametrize them with real data from the ongoing pandemic
(policy changes, mobility data, price fluctuations, etc.). Relaxing

12Apple. https://covid19.apple.com/contacttracing
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the rational decision-making aspect is another prominent direction:
behavioral modeling with respect to obedience, other-regarding
preferences and risk-taking could be incorporated into the games.
Finally, a formal treatment of the mechanism design problem consti-
tutes important future work, incorporating hierarchical designers
(WHO, EU, nations, municipality, household), an elaborate cost
model, and analyzing optimal policies for different time horizons. If
done with care, these steps would help create an extensible mecha-
nism design framework that can aid decision makers in pandemic
response.
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ABSTRACT
This paper envisions using user-generated data as a cheap way
to improve accuracy of epidemic tolls in underserved communi-
ties. The global widespread of COVID-19 pandemic has imposed
several unprecedented challenges. One of these challenges is con-
stantly monitoring the unprecedented epidemic widespread at a
fine-granular spatial scale, so experts can model, understand, and
prevent disease transmission and field personnel can reach and
treat infected people. Unfortunately, the limited resources com-
pared to the pandemic widespread has led to a significant number
of unreported cases in underserved communities and developing
countries, including a large number of severe cases.

We propose in this paper enhancing epidemic case reporting in
underserved communities through exploiting the power of data that
are posted by people on web. Our vision is building a data analysis
pipeline that filters and categories use-generated data objects to
provide informal estimates for tolls in unreachable regions and
enhance estimates in other regions. The pipeline consist of five
stages, that starts with filtering epidemic-specific data to visualize
advanced aggregates to end users. We also discuss several technical
challenges that face different stages of the pipeline.
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1 INTRODUCTION
The global widespread of COVID-19 pandemic has clearly intro-
duced unprecedented challenges to humanity at different fronts. In
the front line of these challenges are the health-related challenges,
including reaching out and providing appropriate medical care to
infected people. However, this pandemic has a global widespread
almost in every country, province, and village worldwide, which
makes monitoring it a tremendously difficult task. With the lim-
ited resources, the health systems have to prioritize patients for
care based on different factors [7, 14–16]. Unfortunately, the un-
derserved communities, e.g., rural areas and slums in developed
countries or small cities and villages in developing countries, are
highly impacted by the consequences of this pandemic relative
to other communities. This is because of their higher exposure to
the causes of infection and their limited access to COVID testing
and equipped medical care facilities [5, 10–12, 25]. Furthermore,
failure to monitor and report cases is a growing concern particu-
larly in developing countries because of the limited public health
infrastructure, the weak health systems, insufficient laboratory ca-
pacity of diagnostic testing, and the poor surveillance systems for
diseases [1, 18]. Therefore, the number of reported infections and
deaths in underserved communities does not reflect the actual num-
bers almost everywhere [3, 23]. This leads to a very high cost in
lives. For example, as of September 2020, more than 75% of children
who have died of COVID-19 in the U.S. are minorities, though they
account for just 41% of the overall youth population [28].

To improve access to underserved communities, we propose
to use the power of people to mitigate reporting inaccuracy. The
main idea is using user-generated data that flows on web around
the clock to extract related information that helps in improving
epidemic reporting to health officials. Such mitigation will have
a great impact as it will enable reaching currently inaccessible
cases. This helps health officials to provide appropriate medical care,
surround infection foci, and control the situation faster especially
in underserved communities that are highly impacted with limited
reporting means and highly infectious environments.

Existing work on coronavirus-related social media data puts a
particular focus on controlling spread of misinformation that are
related to the pandemic symptoms, transmission modes, and other
misleading information that could harm people’s health [2, 4, 8, 9,
13, 19, 20, 22, 24]. Although this is a crucially important problem
to address, it deals with extracting harmful information from user-
generated data to prevent the negative aspects of spreading mis-
information. On the contrary, our work deals with user-generated
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data positively as a source of important information that could
help health experts. This is also related to orthogonal efforts that
deal positively with coronavirus-related user-generated data, in-
cluding sentiment analysis [27], integrating with IoT data [26], and
modelling transmission [21].

The proposed data analysis pipeline consists of five main stages:
adaptive filtering, categorization, geotagging, aggregation, and vi-
sualization. Each of these stages has different issues related to either
lingual dependency, processing streams, or granularity. The rest
of this paper outlines each analysis stage, discussing the technical
issues and their implications.

2 DATA ANALYSIS PIPELINE
This section outlines the proposed data analysis pipeline. Figure 1
shows the proposed pipeline architecture. The pipeline consists of
five ordered stages, namely, adaptive filtering, categorization, geotag-
ging, aggregation, and visualization. The stages work in a sequential
order, where the output of each stage is an input to the following
stage. The first stage takes the input data and epidemic-specific
information, while the last stage output visualized aggregates for
epidemic cases grouped by spatial locations and temporal intervals.
The main functionalities and distinguishing characteristics of each
stage are briefly outlined below.
(1) Adaptive filtering: This stage takes two inputs: (a) A static
dataset or a dynamic data stream of user-generated objects, e.g.,
tweets, posts, comments, or fusion of them. (b) Epidemic-specific
characteristics; a set of seed keywords, optional locations of interest,
and optional times of interest. Using the two inputs, an adaptive
filter is employed to filter out any data object that does not satisfy
the epidemic characteristic. Therefore, any data object that does
not contain any of the keywords, lies outside the areas of interest,
or posted outside the times of interest will not be considered for
further processing. When neither locations nor times are provided,
all locations and times are considered relevant, e.g., all locations are
relevant for the global COVID-19 pandemic. However, this filter
should be adaptive in terms of improving the filtering keywords
while the filtration process goes on. To this end, when a relevant
data is found based on the seed keywords, the adaptive filter should
keep all other words of this data except stop words. Over time, the
filter will discover more keywords that identify epidemic-related
data adaptively, either by using frequent words or other keyword

identification methods. This adaptation should also consider the
type of input dataset, as static datasets are easier to discover new
keywords compared to dynamic data streams.
(2)Categorization: This stage takes the set of relevant data objects,
that are output of the first stage, to categorize them based on the
epidemic case statuses. For example, for COVID-19 pandemic, three
potential case categories are: a death case, a mild infection case, and
a severe infection case. Such categorization is epidemic-specific in
terms of number of categories and how to identify each category.
One way is keyword-based categorization, where each category is
defined by a set of keywords and the object is assigned based on
the corresponding keywords. This way can be performed jointly
with the adaptive filtering stage where the list of filtering keywords
are categorized into multiple categories, or separately based on
different keyword sets. Another way is using machine learning
techniques that have shown effectiveness in document classification.
Regardless the categorization method, data in each category will be
used in the aggregation stage for improving miscounting accuracy.
(3) Geotagging: Another piece of information that is needed in
data aggregation is the geographical location of each data object
to map the epidemic case to a corresponding city, district, or vil-
lage. Despite the widespread of mobile devices and mobile users of
online platforms, automatic geotagging is still a limitation where
majority of data comes either with very coarse spatial granularity
or without any spatial information. A main reason is legal privacy
concerns, where user-generated data platforms disable automatic
geotagging by default to protect personal privacy and avoid legal
problems. To overcome this limitation, this stage analyzes the data
object’s content and metadata to assign a primary relevant location.
Geotagging has been studied in the literature for different settings
and performance trade-off, including for short posts, long posts, etc.
Among the recent work is [17] that uses deep learning to geotag
tweets of any language. This type of work is the most relevant for
user-generated data of epidemic analysis due to high percentage
of short posts and popularity in different languages. This is also
related to the cross-lingual issues that will be discussed in Section 3.
(4) Aggregation: After processing over the first three stages, the
output data objects are ready to be aggregated into corresponding
locations and time intervals. This spatio-temporal aggregation stage
represents the main counting and analysis stage. Locations could
be attached from the original data source or resulted from the
geotagging stage. The object timestamp is attached from the original
data source in majority of platforms. The aggregation could be
either a simple counting aggregation grouped by location and time
for all places and times, or advanced aggregation for a specific place
or certain time intervals. We outline our vision for both below.

Simple aggregations. The simple spatio-temporal aggregation
stage sums up data objects counts based on user-defined hierarchies
for both spatial and temporal dimensions. For the spatial dimension,
end users, e.g., health officials or activists, might, for example, de-
fine a hierarchy of <city, county, state> to count different categories
of epidemic cases for each provided city, county, and state within
the USA. Users should be able to control defining this hierarchy
based on the needs and the different administrative region divisions
around the world. Also, the provided regions are not necessarily
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to be of predefined borders, but could be arbitrary, e.g., output of a
regionalization algorithm, to enable exploring areas based different
attributes, e.g., economic level, population density, or environmen-
tal factors. In all cases, the attached location information to data
objects affects the count accuracy for this user-defined spatial hier-
archy. For example, if the attached information provides city-level
locations but not district-level, any hierarchy that includes districts
will suffer form low counting accuracy. This is discussed among
the technical issues in Section 3.

Unlike the spatial dimension, the temporal dimension is more
deterministic and has clearer aggregation options, and in turn less
issues. Users can still define temporal hierarchy for aggregations.
For example, the user can define <day,week,month> hierarchy to
count cases for each day, week, and month in each city, county or
state. Unlike spatial information, attached temporal information
are provided in fine granularity, e.g., second-level granularity, in
majority of platforms. This makes temporal aggregation easier and
of much better accuracy. By default, each level of the temporal
hierarchy assumes disjoint time intervals, e.g., disjoint days, for
ease of use due to popularity of this temporal aggregation model.
However, users should be also able to define temporal hierarchies of
overlapping time intervals. For example, if the analysis is performed
on a continuous data stream, a sliding window of three days will be
of interest for health officials to monitor in different places, which
is by definition a set of overlapping time intervals. This could be
also applicable to static datasets in certain analysis scenarios. So,
allowing overlapping time intervals will be a useful aggregation
feature to support.

Advanced aggregations. Beyond the simple count aggrega-
tions for all levels of spatial and temporal hierarchies, end users
will be interested in more advanced aggregations that better show
the situation in specific places and at certain times. For example,
when Southern California appears as a region with high number
of cases on the epidemic map, health officials will be interested in
producing advanced aggregates for Southern California counties
that show the absolute and relative increase in number of cases over
the past seven days. Another example is finding areas that have the
highest rate of increase over the past three days to mitigate most
vulnerable regions. We can discuss endless examples that combine
spatial, temporal, and counts in an advanced way to show a dif-
ferent information or insight. It is important to identify the most
important blocks that are used in such advanced analysis based
on the need of domain experts, making use of existing analysis
frameworks as data analysis infrastructures.
(5) Visualization: The last stage is visualizing both simple and ad-
vanced spatio-temporal aggregates to end users, e.g., health officials
or leading community activists, to enable them making use of these
counts effectively. This stage should make use of the existing rich
literature of visualization frameworks, such as UCI Cloudberry [6],
to provide low-effort and effective visualization. Obviously, a ge-
ographical map will be an essential element in such visualization.
Domain experts should be involved in collecting requirements for
all needed visualization features, so they are effective for them as
end users. For this context, fundamental visualization elements that
should be supported are heatmaps that are either based on admin-
istrative borders or cross-borders, hover display boxes that shows

cases counts in each spatial entity, filters that allow fragmenting
the data based on location and time, and filters that allow fragment-
ing based on other important attributes such as case category, e.g.,
either death, mild infection, or severe infection of COVID-19. In ad-
dition, the traditional pan, zoom, linking, and brushing features of
interactive geovisualization should be supported to enable effective
display and exploration for both simple and advanced aggregates.

3 DISCUSSIONS
This section discusses some technical issues that should be ad-
dressed while developing the proposed data analysis pipeline. We
discuss issues of language dependency, real-time streams, granular-
ity, and multi-locatable objects.
Language dependency. One of the main challenges in supporting
underserved communities for epidemic data applications is the lan-
guage issue. Obviously, the language and its usage is highly variant
from one underserved community to another, depending on the
country and even the locality within that country. Orthogonal from
differences in languages among countries, it is known that dialects
could be very different within different parts of the same country.
This issue affects the first three stages of our pipeline, adaptive filter-
ing, categorization, and geotagging. Addressing this issue could take
one of two forms. The first way is tailoring the developed pipeline
for a certain underserved community, and hence use its specific
language and dialects as input to process. This means tailoring the
filtering and categorization keywords and using language-specific
geotagging tool, e.g., place ontology. The alternative way is train-
ing machine learning models that uses blended datasets of several
languages to adapt for a multi-lingual setting. This approach is used
in the literature for different tasks. For example, the work in [17]
uses this approach for cross-lingual geotagging.
Real-time streams. When data analysis is performed on a dy-
namic data stream that continuously receive data objects around
the clock, different aspects of data analysis change including data
storage, processing schemes, and query models. This has triggered
the whole literature of streaming data management that is active for
a couple of decades. For our proposed data analysis pipeline, analyz-
ing streaming data will have impact on all stages. The least affected
stage is geotagging as many of existing geotagging methods depend
solely on the data object’s content and metadata, without much
dependency on previous or upcoming objects. A main problem for
this stage will be geotagging efficiency in real time, however, using
fast machine learning models could solve this problem [17]. For
other stages, the impact is clearer. The filtering phase will be a
driver stage as it will help to significantly reduce the streaming
data size and output only relevant data objects, so the number of
objects to be processed by the following stages are much smaller
in size. This will eliminate one of the major overhead in stream
processing, which is excessive data size. The other major over-
head, which is incremental data processing, will clearly affect the
other three stages, categorization, aggregation, and visualization.
In categorization, incremental document classification has to be
incorporated. If keyword-based categorization is employed, incre-
mental processing will be straightforward to incorporate. Machine
learning based categorization will be more challenging to handle.
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Although several existing techniques handle this setting, the re-
sult accuracy is expected to be lower compared to static datasets.
The incremental aggregation will be easier and less impacted by
the streaming nature. The reason is that all our aggregations de-
pend on counting, which is easy to maintain incrementally. The
visualization will consume the aggregation results as is. However,
incremental results updates will need to be visualized incrementally
to end users. However, in case of epidemics, even hourly updates
are considered fast enough for most of the cases, and this can be
adequately served by existing visualization platforms.
Granularity. At different stage of the proposed pipeline, granu-
larity plays a role in trading off usability and processing overhead
of analyzing user-generated data. For example, adaptive filtering
could classify objects as relevant or irrelevant and output one type
of relevant objects. It could also filter at a finer granularity and
further classifies relevant objects into further types to distinguish
epidemic-specific cases. This is clearer in the categorization stage
that can provide coarse-granular or fine-granular categories with a
wide variety of options. Finer granularity levels will provide better
accuracy and more information, but it will come with further pro-
cessing requirements. Granularity is also a trade off for geotagging,
where accurate point geotagging consumes much larger processing
overhead, while city-level or province-level geotagging is much
faster. The granularity of aggregation over space and time will also
introduce the same trade off, but it will add a storage trade off as
well to decide how much data to store. In general, granularity is a
cross-stage issue to consider while designing and developing the
proposed pipeline, and it should consider the trade off between
available computing resources and required functionality.
Multi-locatable objects. Some data objects might be attachable
to multiple locations. Examples for sources of such phenomenon
are location ambiguity, e.g., Alexandria is a city name in different
countries, mentioning multiple locations either within the content
or in both content and metadata, e.g., the user profile shows a
city in USA and the post is about a city in India. Regardless the
source of multiple locations, this represents a challenge as we can-
not assume the case is replicated in multiple physical places unless
the locations are nested, e.g., California and USA. However, for
the general case where the attachable locations are different, it is
essential to promote one of them as the primary location to be
used in further analysis. Location selection could be rule-based
or certainty-based. Rule-based location selection will apply some
heuristic rules to promote the most probable location, e.g., favoring
the content words over the user profile location or favoring the
earliest mentioned location. Certainty-based location selection will
depend on assigning a probability to each potential location, ei-
ther based on a probabilistic model or a multi-class classifier. Then,
locations can be considered or neglected based on these probabilis-
tic values. This certainty-based model opens the door to consider
more than one location in the aggregation by introducing uncertain
query processing. However, we believe that might be confusing for
non-expert end users. Another option is to consider all uncertain
locations to contribute partially while distinguishing them from
certain locations in both aggregation and visualization stages.
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ABSTRACT
Policy-makers require data-driven tools to assess the spread of
COVID-19 and inform the public of their risk of infection on an on-
going basis. We propose a rigorous hybrid model-and-data-driven
approach to risk scoring based on a time-varying SIR epidemic
model that ultimately yields a simplified color-coded risk level for
each community. The risk score Γ𝑡 that we propose is proportional
to the probability of someone currently healthy getting infected in
the next 24 hours based on their locality. We show how this risk
score can be estimated using another useful metric of infection
spread, 𝑅𝑡 , the time-varying average reproduction number which
indicates the average number of individuals an infected person
would infect in turn. The proposed approach also allows for quan-
tification of uncertainty in the estimates of 𝑅𝑡 and Γ𝑡 in the form
of confidence intervals. Code and data from our effort have been
open-sourced and are being applied to assess and communicate the
risk of infection in the City and County of Los Angeles.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies.
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1 INTRODUCTION
The ongoing COVID-19 epidemic has forced governments and pub-
lic authorities to employ stringent measures [6, 10], including clos-
ing business and implementing stay-at-home orders, to contain
the spread. When making such decisions, policymakers require
tools to understand in “real-time" how the virus is spreading in
the community, as well as tools to help communicate the level of
risk to citizens so that they can be encouraged to take appropriate
measures and take the public health directives seriously.

One metric that has been found to be useful for authorities to as-
sess the level of containment over time is the effective reproduction
number [7]. The effective reproduction number, 𝑅𝑡 , indicates on
average how many currently susceptible persons can be infected by
a currently infected individual. The epidemic grows if this measure
is above one. It is desirable to keep this value as far below one as
possible over time in order to contain and eventually, hopefully,
eliminate the virus from the community.

While 𝑅𝑡 is meaningful to understand the rate at which the epi-
demic is spreading and has been proposed previously (for example,
see https://rt.live/ ), what has been missing in the public discourse
is a risk metric that is more suitable for communication to a wider
public. One key requirement for such a metric is that it be some-
thing that a citizen could relate to on an individual basis. Another
requirement is that it needs to be easy to communicate to a wide
audience. We address both these requirements in this work and
make the following contributions.

First, we obtain the daily effective reproduction number 𝑅𝑡 of a
time-varying SIR model as well as the corresponding confidence
Interval. The confidence interval reflects uncertainty in both the
parameter of the underlyingmodel and uncertainty in the data itself.
Further, we present the mathematical derivation of the distribution
of 𝑅𝑡 .

Second, we propose a novel risk score Γ𝑡 for a community that is
proportional to the probability that an individual will get infected
in the next 24 hours. We show that the risk score can be calculated
given estimates of four quantities: a) an estimate of 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡), the
most recently reported count of new confirmed infectious cases, b)
an estimate of 𝑅𝑡 as discussed above, c) an estimate of 𝐾 , the ratio
of true infectious cases to the number of confirmed cases, and d) an
estimate of 𝑆 (𝑡), the current number of susceptible individuals in
the community. To make the score more meaningful, we normalize

36

https://doi.org/10.1145/3423459.3430759
https://doi.org/10.1145/3423459.3430759
https://rt.live/


COVID-19, November 3, 2020, Seattle, WA, USA Kiamari, et al.

the probability of infection by multiplying it by 10,000. Then, a risk
score of 𝑥 is an indication that there is, on average, a chance of 𝑥 in
10,000 of an individual in the community becoming infected in the
next 24 hours. We also propose to convert the numerical risk score,
which has an intuitive meaning as indicated above, to a color-coded
risk level based on suitably chosen thresholds1. We propose the use
of four color-levels to indicate the corresponding risk level from
very low to high: green, yellow, orange, and red.

Third, we have implemented software to estimate the risk level
for any community and released it as open-source. The code re-
quires only time-series data on confirmed new cases, the population
of the community, and an estimate for the ratio of true to confirmed
(detected) COVID-19 positive cases. This software is being used at
USC to process the daily data of communities within Los Angeles
County to estimate and generate maps of risk levels by community.
The block diagram in figure 1 illustrates key elements of our system
design. Our data parser is able to get the raw data from online data
sources, clean them up and store them in machine-friendly (csv
and json) formats. Our code for infection risk calculation uses this
data in conjunction with a time-varying SIR-based Bayesian math-
ematical model to obtain risk estimates and prediction for different
communities. The results are provided in CSV format and can be
used to generate a heatmap-type visualization as well.

The risk scoring model we describe in this work is now being
used by the City of Los Angeles, which in turn is working with the
County of Los Angeles and other partners to develop a publicly
accessible tool that can be used by individuals and communities
to grow awareness and mitigate risk of infection. We believe that
our risk estimation approach will be similarly of value to other
communities around the world.

The rest of the paper is structured as follows: Section 2 reviews
the related work. The novel risk calculation methodology is pre-
sented in Section 3. Section 4 discusses the implementation and
evaluation of the proposed method in Los Angeles County. The key
results are discussed in Section 5. Section 6 concludes the paper.

2 RELATEDWORK
There have been a few recent works studying different transmission
models for COVID-19 such [4] which developed an agent-based
model to reproduce the characteristics of COVID-19 transmission or
[1] which proposed a mobility-based model to measure COVID-19
growth rate ratio for a given day.

As noted above, the calculation of the risk score requires an esti-
mate of𝑅𝑡 . We show how this can be estimated using a time-varying
SIR model, a generalization of the well-known SIR compartmental
model [3, 8] which consists of three states, namely the susceptible
state, the infected state, and the recovered state. While traditionally
this model is assumed to have a interaction rate / infection rate
parameter that is constant, one recent work has used a time-varying
SIR model to recover the time-varying effective reproduction num-
ber [5]. Going beyond that work, we also show how to derive a
confidence interval for 𝑅𝑡 in this work. Further, the authors of [5]
make strong assumptions on the number of susceptible individuals
by approximating it as a constant factor of the entire population.

1Thresholds for categorizing into very low-risk, low-risk, medium-risk, and high-risk
levels are set from a medical perspective.

This assumption may not be accurate when the number of infected
individuals are high compared to the total population of a commu-
nity; we therefore take a more general approach.

Another recent work by Systrom [9] has presented a Bayesian
prediction approach to obtain confidence intervals for 𝑅𝑡 . However,
Systrom’s work builds on [2], where the definition of infection rate
𝑅𝑡 is not based on a time-varying contact rate of the SIR model.
Instead, their approach estimates infection rate probabilistically
based on the number of new cases alone.

We are not aware of prior work that has proposed defining
risk for COVID-19 or other epidemics in terms of an individual’s
probability of infection, which we argue is more meaningful for
communicating risk to the public.

3 METHODOLOGY
Compartmental mathematical models for epidemic spreads includ-
ing the well-known SIR model have been used since the work of
Kermack and McKendrick in 1927 [3]. In the SIR model, each mem-
ber of a given population is in one of three states at any time:
susceptible, infectious, recovered. Any individual that is susceptible
could become infected with some probability when they come into
contact with an infected individual. Any individual that is infectious
eventually recovers (in the context of COVID-19 when applying
the SIR model, note that the category of recovered individuals will
also include removed individuals due to deaths, which could be
modeled as a constant fraction of all individuals in this category).
In the classical SIR model, the number of susceptible individuals
that become infected depends on the rate at which infected and sus-
ceptible individuals encounter each other and this rate is assumed
to be constant. A well-known parameter in the classical SIR model
is called R0, the effective reproductive number, which measures the
average number of infections caused by infectious individuals at
the beginning of the epidemic.
Time-Varying SIRmodel and 𝑅𝑡 : In our work, we have extended
the SIR model to a time-varying model, in which the rate of encoun-
ters and infection probability between individuals in the population
is assumed to be time-varying. This better reflects the reality of our
present epidemic where interventions such as stay-at-home have
been put in place and relaxed and various times and compliance
with recommendations such as wearing masks and maintaining
physical density has also been time-varying. Based on this model,
we are able to define and derive a new approach to calculating a
time-varying version of the effective reproductive number, which
we refer to as 𝑅𝑡 .

A particularly innovative aspect of our model is that it is a
Bayesian model that allows the incorporation of various sources
of uncertainty in the model, including uncertainty in the actual
numbers of infected individuals (due to not every infected individ-
ual having been tested, as studies [2] have shown), uncertainty in
recovery times, and uncertainty in the choice of parameters for
de-noising the empirical data. This allows us to generate not only
an estimate of 𝑅𝑡 , but also quantify confidence in the estimate from
a rigorous statistical perspective.

In this section, we elaborate upon the SIR model in detail. The
SIR model is one of the simplest and the most well-known epidemic
model [3, 8] where each person belongs to one of the following three
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Figure 1: Overview of Our System.

states: the susceptible state, the infected state, and the recovered
state. Regarding the susceptible state, individuals have not had the
virus yet. However, they may get infected in case of being exposed
to an infected individual. As far as the infected state is concerned,
a susceptible person has the virus after being exposed to infected
individuals. Finally, a person enters the recovered state in case of
either the individual gets healed or dies. One important point about
this model is that a recovered person will not be a susceptible one
anymore. This is how the model is constructed, as in most cases it
appears that COVID-19 has an extremely low re-infection rate, at
time of writing this paper.

The SIR model follows the following differential equations:

𝑑𝑆 (𝑡 )
𝑑𝑡

= −𝛽 𝑆 (𝑡 )𝐼 (𝑡 )
𝑁

𝑑𝐼 (𝑡 )
𝑑𝑡

= 𝛽
𝑆 (𝑡 )𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 )

𝑑𝑅 (𝑡 )
𝑑𝑡

= 𝜎𝐼 (𝑡 )

(1)

where 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡) respectively represent the number of
susceptible, infected, and recovered people in a population size of
𝑁 at time 𝑡 . Regarding the parameter 𝜎 , it is the recovery rate after
being infected and is equal to 1

𝐷𝐼
where 𝐷𝐼 represents the average

infectious days. Parameter 𝛽 is known as the effective contact rate,
i.e. the average number of contacts an individual have with others
is 𝛽 .

In analyzingwhether any pandemic is contained, it is very crucial
to obtain parameter 𝛽 . We next show that how we can derive 𝛽
from the aforementioned differential equations.

3.1 Obtaining 𝛽𝑡 and 𝑅𝑡 for the SIR Model
In the SIR model, we can express the number of susceptible individ-
uals in terms of population size and the number of infected persons
as 𝑆 (𝑡) ≈ 𝑁 − 𝐼 (𝑡). By replacing 𝑆 (𝑡) with 𝑁 − 𝐼 (𝑡) in the second
differential equation of (1), we would have

𝑑𝐼 (𝑡 )
𝑑𝑡

= 𝛽

(
𝑁 − 𝐼 (𝑡 )

)
𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 ) . (2)

We can rewrite (2) as follows:

𝑑𝐼 (𝑡 )
(𝛽 − 𝜎)𝐼 (𝑡 ) − 𝛽

𝑁
𝐼 2 (𝑡 )

= 𝑑𝑡 . (3)

By taking definite integral from time 𝑡1 to 𝑡2 and assuming 𝛽 to be
constant in this time interval, we would have∫ 𝑡2

𝑡1

𝑑𝐼 (𝑡 )
(𝛽 − 𝜎)𝐼 (𝑡 ) − 𝛽

𝑁
𝐼 2 (𝑡 )

=

∫ 𝑡2

𝑡1
𝑑𝑡 (4)

which leads to
1

𝛽 − 𝜎

(
log

𝐼 (𝑡2)
𝛽 − 𝜎 − 𝛽

𝑁
𝐼 (𝑡2)

− log
𝐼 (𝑡1)

𝛽 − 𝜎 − 𝛽

𝑁
𝐼 (𝑡1)

)
= 𝑡2 − 𝑡1 (5)

One can easily check (5) has a unique solution for 𝛽 due to the
fact that term 1

𝛽−𝜎 and log term have monotonic behaviors.
An epidemic happens in case of increase in the number of in-

fected individuals, i.e. 𝑑𝐼 (𝑡 )
𝑑𝑡

> 0, or consequently

𝛽

(
𝑁 − 𝐼 (𝑡 )

)
𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 ) > 0. (6)

In the early stage of an epidemic, almost everyone are susceptible
except very few cases. Therefore, 𝑁 − 𝐼 (𝑡) ≈ 𝑁 and as a result,
condition (6) would turn into 𝛽

𝜎 > 1.
The variable𝑅 ≜ 𝛽

𝜎 is defined as the effective reproduction number.
It is a useful metric to determine epidemic growth. In case of having
𝑅 > 1, the epidemic is growing exponentially while 𝑅 < 1 indicates
the epidemic is contained and will decline and die out eventually.

For discrete-time cases such as daily reporting on number of
infected cases, the time-variant effective contact rate 𝛽𝑡 , which
represents the contact rate for time slot 𝑡 can be derived by solving
the following equation:

1
𝛽𝑡 − 𝜎

(
log

𝐼 (𝑡 + 1)
𝛽𝑡 − 𝜎 − 𝛽𝑡

𝑁
𝐼 (𝑡 + 1)

− log
𝐼 (𝑡 )

𝛽𝑡 − 𝜎 − 𝛽𝑡
𝑁
𝐼 (𝑡 )

)
= 1 ∀𝑡 . (7)

Therefore, the time-variant effective reproduction number would
be defined as 𝑅𝑡 ≜

𝛽𝑡
𝜎 . Since it is difficult to write a closed form

solution for 𝛽𝑡 in (7), we take a simpler approximation to 𝛽𝑡 by
considering the following which is based on (2)

𝛽𝑡 ≈
𝜎𝐼 (𝑡 ) +

(
𝐼 (𝑡 + 1) − 𝐼 (𝑡 )

)
(
1 − 𝐼 (𝑡 )

𝑁

)
𝐼 (𝑡 )

. (8)

Then, we estimate 𝑅𝑡 as
𝛽𝑡
𝜎 .

3.2 Obtaining the Confidence Interval for 𝑅𝑡
Since there is uncertainty about parameter 𝐷𝐼 (or equivalently 𝜎)
and the number of infected cases 𝐼 (𝑡), we now provide the deriva-
tion of confidence interval for parameter 𝑅𝑡 . Regarding modeling
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the ambiguity in the number of the infected cases, we present the
uncertainty about the actual number of infected cases as a factor
of reported ones, i.e. 𝐼𝑟𝑒𝑝 (𝑡) ≜ 1

𝐾
𝐼 (𝑡), and 𝐾 is a constant greater

than 1. The main intuition behind this factor is due to taking into
account the following two phenomena, namely lack of sufficient
number of tests (specially in the beginning of the pandemic) and
asymptomatic cases (mild infections which might not even be no-
ticed). To derive the confidence interval, we need to first find the
marginal distribution of 𝑅𝑡 . By considering 𝑓𝐷 (𝑑) and 𝑓𝐾 (𝑘) as the
probability distribution function (pdf) for parameters 𝐷𝐼 and 𝐾 ,
respectively, the joint pdf of these parameters would be

𝑓𝐷,𝐾 (𝑑, 𝑘) = 𝑓𝐷 (𝑑) 𝑓𝐾 (𝑘) (9)

due to the independence of 𝐷𝐼 and 𝐾 . We can derive the probability
distribution function of 𝑅𝑡 by performing the following transfor-
mation on parameters 𝐷𝐼 and 𝐾 and introducing auxiliary variable
𝑍 :

𝑍 ≜ 𝐾 , 𝑅𝑡 =
1

1 − 𝐾𝐼𝑟𝑒𝑝 (𝑡 )
𝑁

(
1 +𝐷𝐼

𝐼𝑟𝑒𝑝 (𝑡 + 1) − 𝐼𝑟𝑒𝑝 (𝑡 )
𝐼𝑟𝑒𝑝 (𝑡 )

)
. (10)

Since the transformation of (𝑍, 𝑅𝑡 ) to (𝐷𝐼 , 𝐾) is one-to-one, we
have

𝐾 = 𝑍 , 𝐷𝐼 =
𝑅𝑡 (1 − 𝑍𝑎𝑡 ) − 1

𝑏𝑡
, (11)

where 𝑎𝑡 ≜
𝐼𝑟𝑒𝑝 (𝑡 )
𝑁

and 𝑏𝑡 ≜
𝐼𝑟𝑒𝑝 (𝑡+1)−𝐼𝑟𝑒𝑝 (𝑡 )

𝐼𝑟𝑒𝑝 (𝑡 ) , the joint pdf of 𝑍
and 𝑅𝑡 would be 𝑓𝑍,𝑅𝑡 (𝑧, 𝑟 ) = |𝐽 |𝑓𝐷,𝐾 (𝑑, 𝑘) with

𝐽 ≜

[
𝜕𝑑
𝜕𝑧

𝜕𝑑
𝜕𝑟

𝜕𝑘
𝜕𝑧

𝜕𝑘
𝜕𝑟

]
. (12)

By substituting the corresponding values of parameters and the
Jacobian, we have:

𝑓𝑍,𝑅𝑡 (𝑧, 𝑟 ) = | 1 − 𝑧𝑎𝑡
𝑏𝑡

|𝑓𝐷 ( 𝑟 (1 − 𝑧𝑎𝑡 ) − 1
𝑏𝑡

) 𝑓𝐾 (𝑧) . (13)

The marginal pdf of 𝑅𝑡 can be obtained by taking integral of (13)
over parameter 𝑧, i.e.

𝑓𝑅𝑡 (𝑟 ) =
∫

𝑓𝑍,𝑅𝑡 (𝑧, 𝑟 )𝑑𝑧 =

∫
| 1 − 𝑧𝑎𝑡

𝑏𝑡
|𝑓𝐷 ( 𝑟 (1 − 𝑧𝑎𝑡 ) − 1

𝑏𝑡
) 𝑓𝐾 (𝑧)𝑑𝑧.

(14)
Remark 1: Based on statistical experiments, one reasonable

assumption regarding the pdf of parameters𝐷𝐼 and𝐾 is that both of
them have Gaussian distributions. By considering 𝐷𝐼 ∼ N(𝜇𝐷 , 𝜎2

𝐷
)

and 𝐾 ∼ N(𝜇𝐾 , 𝜎2
𝐾
), the pdf of 𝑅𝑡 can be simplified as

𝑓𝑅𝑡 (𝑟 ) =
∫ 1

𝑎𝑡

−∞
(𝛽0 + 𝛽1𝑧)𝐶

√
2𝜋𝜎2

𝑐𝜙𝜇𝑐 ,𝜎2
𝑐
(𝑧)𝑑𝑧

+
∫ ∞

1
𝑎𝑡

(−𝛽0 − 𝛽1𝑧)𝐶
√

2𝜋𝜎2
𝑐𝜙𝜇𝑐 ,𝜎2

𝑐
(𝑧)𝑑𝑧,

(15)

where𝜙𝜇𝑐 ,𝜎2
𝑐
(.) indicates the pdf of a normal distribution with mean

𝜇𝑐 and variance 𝜎2
𝑐 while

𝛽0 ≜
1
𝑏𝑡
, 𝛽1 ≜

−𝑎𝑡
𝑏𝑡

,

𝛼0 ≜
( 𝑟−1
𝑏𝑡

− 𝜇𝐷 )2

2𝜎2
𝐷

+
𝜇2
𝐾

2𝜎2
𝐾

, 𝛼1 ≜
(− 𝑟𝑎𝑡

𝑏𝑡
) ( 𝑟−1

𝑏𝑡
− 𝜇𝐷 )

𝜎2
𝐷

− 𝜇𝐾

𝜎2
𝐾

,

𝛼2 ≜
( 𝑟𝑎𝑡
𝑏𝑡

)2

2𝜎2
𝐷

+ 1
2𝜎2
𝐾

, 𝜇𝑐 ≜
−𝛼1
2𝛼2

, 𝜎2
𝑐 ≜

1
2𝛼2

, 𝐶 ≜
𝑒
−(𝛼0− 𝛼1

4𝛼2
)

2𝜋𝜎𝐷𝜎𝐾
.

(16)

By taking integral through using change of parameters, (15) can be
rewritten as follows

𝑓𝑅𝑡 (𝑟 ) = −2𝐶𝛽1𝜎
2
𝑐 𝑒

−
( 1
𝑎𝑡

−𝜇𝑐 )2

2𝜎2
𝑐 +𝐶

√
2𝜋𝜎2

𝑐 (𝛽1𝜇𝑐 + 𝛽0)Φ𝜇𝑐 ,𝜎2
𝑐
( 1
𝑎𝑡

)

+𝐶
√

2𝜋𝜎2
𝑐 (−𝛽1𝜇𝑐 − 𝛽0) (1 − Φ𝜇𝑐 ,𝜎2

𝑐
( 1
𝑎𝑡

)),
(17)

where Φ𝜇𝑐 ,𝜎2
𝑐
(.) represents the cumulative distribution function

(cdf) of a normal distribution with mean 𝜇𝑐 and variance 𝜎2
𝑐 .

The confidence interval would belong to (𝑅𝑡 − 𝛿, 𝑅𝑡 + 𝛿) where
𝑅𝑡 ≜ E[𝑅𝑡 ] =

∫
𝑟 𝑓𝑅𝑡 (𝑟 )𝑑𝑟 and 𝛿 can be derived by satisfying

P( |𝑅𝑡 − 𝑅𝑡 | ≤ 𝛿) =
∫ 𝑅𝑡+𝛿
𝑅𝑡−𝛿 𝑓𝑅𝑡 (𝑥)𝑑𝑥 = 1 − 𝜖 for some small 𝜖 > 0.

3.3 Estimating the Risk Score
We propose a novel risk score metric for a given community that
is proportional to the probability of someone in that community
becoming infected in the next time period (typically, 24 hours). The
risk score can be derived as the average number of people in that
community that are likely to get infected in the next 24 hours by
the currently infectious people divided by the current number of
susceptible individuals. We further normalize this probability by
multiplying by 10,000, so that a score of 1 implies a 1 in 10,000
chance of getting infected, a score of 2 implies a 2 in 10,000 chance
of getting infected, and so on. Mathematically, the risk score is
defined as follows:

Γ𝑡 =
𝐼 (𝑡) · 𝑅𝑡
𝐷𝐼 · 𝑆 (𝑡)

· 10000 ≈
𝐾 · 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) · 𝑅𝑡

𝑁
· 10000, (18)

where 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) indicates the most recently reported count of
new confirmed infectious cases, 𝐾 refers to the ratio of true cases
to reported cases, 𝑅𝑡 is the time-varying reproduction number, and
𝑁 is the total population size of the community. The approximation
follows from the fact that 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) is approximately equal to
𝐼 (𝑡 )
𝐷𝐼 ·𝐾 and 𝑆 (𝑡) the number of susceptible people in the community
is approximately equal to 𝑁 in the early stages of the epidemic.
Confidence intervals for the risk score Γ𝑡 could be obtained numeri-
cally using a similar process as described for 𝑅𝑡 accounting also for
uncertainty in 𝐾 . Note that since 𝐾 may not be known for a given
community, it may be helpful to use the following normalized form
of the risk score: Γ𝑡

𝐾
, which is still proportional to the probability of

infection for an individual.

3.4 Color-coded Risk Levels
To further simplify the presentation of the risk score to a wider
audience, we propose to classify the risk levels into four color-coded
levels: (Green, Yellow, Orange, Red). The risk level is determined
by evaluating the normalized risk score ( Γ

𝐾
) with respect to three

pre-specified threshold levels 𝜃1, 𝜃2, 𝜃3, such that when Γ
𝐾

< 𝜃1 the
risk level is green, when 𝜃1 ≤ Γ

𝐾
< 𝜃2 the risk level is yellow, when

𝜃2 ≤ Γ
𝐾

< 𝜃3 the risk level is orange, and when Γ
𝐾

≥ 𝜃3 the risk
level is red.
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Figure 2: The left and right plots respectively represent the estimated effective reproduction number 𝑅𝑡 and the risk score Γ𝑡
over time for the entire county of LA considering E[𝐷𝐼 ] = 7.5,𝑉𝑎𝑟 [𝐷𝐼 ] = 9, E[𝐾] = 3, and𝑉𝑎𝑟 [𝐾] = 0.44. The gray area represents
the 95% confidence interval in the estimates.

Figure 3: Estimate of risk score Γ𝑡 over time for four representative communities in LA County: Boyle Heights, Glendale, East
LA, and Norwalk. Regarding the settings, we considered the following E[𝐷𝐼 ] = 7.5, 𝑉𝑎𝑟 [𝐷𝐼 ] = 9, E[𝐾] = 3, and 𝑉𝑎𝑟 [𝐾] = 0.44.
Our approach also yields uncertainty in the estimate, as shown in the form of confidence intervals (in gray).

4 IMPLEMENTATION AND EVALUATION IN
LOS ANGELES COUNTY

The software for data collection, infection rate estimation and pre-
diction has already been implemented and made available as open-
source software (at the following repository: https://github.com/
ANRGUSC/covid19_risk_estimation). The software is written in
Python using standard data processing libraries such as NumPy
and SciPy.

4.1 Data Sources
We have acquired COVID-19 case data from the LA County’s
Department of Public Health using a Python-based data parser
we wrote (open-sourced at the following link: https://github.com/
ANRGUSC/lacounty_covid19_data). We have been updating this

repository regularly with the latest data every day since mid-march
and also making available plots of the number of cases, number
of fatalities, top 6 communities with the large number of cases,
infection rate for the entire LA County, and the top 9 commu-
nities with the highest infection rate at the following link: http:
//anrg.usc.edu/www/covid19.html.

The following data sources are used for the infection rate and
prediction:

• The COVID-19 case information was collected through LA
County’s daily press releases (Accessible through the follow-
ing website:
http://publichealth.lacounty.gov/media/Coronavirus/).

• Recovery information provided by the World Health Orga-
nization.
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Figure 4: Maps showing the estimated risk score for different LA County Communities on different dates since mid-March
2020. Top row: March/23/2020, April/10/2020, April/27/2020; Second row: May/15/2020, June/18/2020, July/1/2020. Third row:
July/25/2020, August/05/2020, August/20/2020. Last row: September/05/2020, September/20/2020, September/28/2020.
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• The population data from LA County Census is available
online (from lacounty.gov/government/geography-statistics/
cities-and-communities/).

4.2 Real-world Usage
The City of Los Angeles is currently using the risk model described
in this work that has been developed by researchers at USC, to
help assess location-based risk for COVID-19 infection. The City is
working with the County and other partners to develop a tool that is
publicly accessible and can be used by individuals and communities
to mitigate risk of infection. The goal is to change behaviors to
reduce risk of infection and promote a greater understanding of
factors that increase COVID risk. A color-coded COVID-19 threat
level tool that can be used by citizens has also been unveiled by the
Mayor of the City of LA, online at https://corona-virus.la/covid-19-
threat-level. Besides, our risk score is made available to community
members here https://grmds.org/risk/, wherein the users can enter
their community name to understand their community’s risk level.
This prototype mapping site is helpful in developing options that
are useful for people and continues to evolve.

5 EVALUATION RESULTS
We present plots from our analysis of LA County community case
data using the estimation approach described in this work in Fig-
ure 2, Figure 3 and Figure 4. The code and the data used for gener-
ating these plots are available at the following GitHub repositories:

• Risk model software: - https://github.com/ANRGUSC/c-
ovid19_risk_estimation

• COVID-19 case data for LACounty: - https://github.com/
ANRGUSC/lacounty_covid19_data

Figure 2 shows plots of the estimated expected reproductive
number 𝑅𝑡 and the estimated risk score for the entire LA county.
These plots are based on a 14-day moving average applied on the
daily number of confirmed cases. In accordance with LA county
daily press releases, there is a sharp jump in both 𝑅𝑡 and risk score
around the beginning of July. Note that the reason the risk score
during the beginning of July is higher than the risk score during the
last week of March, despite having the same 𝑅𝑡 , is due to the fact
that there are significantly more confirmed cases in July compared
to March.

Figure 3 shows the risk score estimates over time for four repre-
sentative communities within LA County. The case data continue to
increase for some communities, while the number of cases remained
somewhat study for a few communities.

Figure 4 shows the color-coded risk levels for communities in
LA County for select dates over the past six months. The risk levels
have gone up for many communities in the last week of July and
the beginning of August, which is also visible in the county-wide
risk score, as shown in Figure 2.

6 CONCLUSION
We have proposed a new risk metric Γ𝑡 that can be used by individu-
als in any community to assess their probability of getting infected
by COVID-19. The metric builds on the estimation of 𝑅𝑡 , the aver-
age reproductive number, which is obtained from a time-varying
extension of the classical SIR model. We show how to evaluate

the uncertainty in both metrics as well. In future work, we plan to
generalize the approach to the SEIR model, which also models an
additional incubation period. We have released code to implement
an estimation of the risk score that can be used for any community
worldwide as long as time-series data for confirmed new cases and
the population are known. We have also proposed the use of simple
color-coded risk levels to inform and guide the public, as has been
adopted in the City of Los Angeles. One open question to be investi-
gated in future work is how residents respond to these color-coded
levels and how to communicate the behaviors appropriate to each
level.
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ABSTRACT
The non-pharmaceutical intervention to reduce the impact and
spread of COVID-19 requires the development of policies and guid-
ance through a collaborative effort among government, academia,
medicine, and citizens. To operationalize this effort, we have de-
veloped an all-encompassing situational awareness platform that
can process multi-modal and multi-source data allowing informed
decision making. Besides, showing the current spread of infection,
the platform also captures the impact of human dynamics on the
infection spread, location, and availability of critical infrastructure,
prediction, and high-performance computing driven simulation.
The platform is extensible, allowing third-party integration and
services to consume the curated data and analytics in near real-time.
We believe the platform will augment critical decision making for
reducing the impact and spread of the pandemic.
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1 INTRODUCTION
In January 2020, the Director-General of the World Health Orga-
nization (WHO) declared the novel coronavirus (COVID-19) out-
break a Public Health Emergency of International Concern (PHEIC),
WHO’s highest level of alarm. Since then, both pharmaceutical and
non-pharmaceutical interventions sprung to action in an attempt to
staunch the spread of infection. In the latter case, healthcare agen-
cies, volunteers, non-profit organizations, and several others have
put forward an effort of epic proportions to curate high-quality
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datasets on cases and available healthcare resources. Prediction
and simulation models are built to demonstrate the likelihood of
infection and its impact. However, to a large extent, these efforts are
isolated and focus solely on one thing; for example, Johns Hopkins
University (JHU) reports cases at the province level in China; at the
city level in the USA, Australia, and Canada; and at the country level
otherwise[7]. Policymakers need an all-encompassing view of the
situation to make an informed and rational decision for maximum
impact. This involves quick access to current situational awareness,
future prediction, and ancillary information such as the location
of critical infrastructure. Until recently, no such mechanism ex-
ists that provide everything under a single umbrella. There could
be several reasons: i) it is difficult to conflate multi-variate data
with varying spatial and temporal granularity, ii) in a continuously
evolving situation, data variables and schema also evolves, making
it impossible to converge on a stable data format, iii) the volume
and velocity of data is enormous, requiring specialized data and
compute architecture. Also, in a dynamic environment like this, the
currency of the data and analytics is paramount. Thus, Real-time
(RT) architectures capable of stream processing are vital to address
the challenge arising from the currency of data insights. Developing
scalable and operational RT architectures have a high upfront cost,
sometimes making it difficult to build and run.

The objective of this work is to develop an integrated COVID-19
pandemic monitoring, modeling, and analysis capability that will
include, - i) historical and current spatio-temporal trends of disease
spread, ii) estimates of required hospital beds, ICU units, ventila-
tors, etc., iii) needed testing capacity and where iv) quantify the
effectiveness of implemented interventions and mitigation strate-
gies. To address these challenges, we developed and operationalized
an agile, online COVID-19 platform for integrating, synthesizing,
analyzing, and visualizing geographically resolved data (collected
as part of this effort) as well as conveying modeling and simulation
results that anticipate future COVID-19 transmission dynamics.

The proposed platform is built by hybridizing the concepts of
Lambda architecture and Hyperscaling to achieve real-time analyt-
ics and visualization of spatiotemporally disparate datasets through
load-aware vertical and horizontal scaling of available infrastruc-
ture with zero downtime. Besides the architecture, the proposed
platform offers two key application-level functions:

Multisource data integration data store: A critical component of
the online platform is the ability to ingest and merge structured
and unstructured data sources curated in support of the COVID-
19 platform from multiple sources that include hospitals, regional
governments, social media, and other crowd-sourced outlets related
to COVID-19 infectious diseases spread.

Interactive analytics dashboard:A substantive system for merging
and scientifically analyzing multiple, disparate open-source data
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streams (e.g. COVID-19 cases, twitter content, quarantine maps,
demographic context, and news feeds), physical data (e.g. temper-
ature, precipitation) and modeling and simulation outcomes. The
work leverages hyperscale architecture for data curation, analysis,
and visualization of a range of curated and modeled data.

The remainder of the paper is structured as follows: section 2
modestly discusses related work and relevant background, the pro-
posed architecture is discussed in section 3, while the operational
workflow release plan is discussed in section 4. The end product
of the platform is a suite of interactive dashboards, their design
and development are discussed in section 5. Hotspot detection is
discussed in section 6 and extending the platform to connect with
third-party applications is discussed in section 7. Finally, the paper
concludes in section 8 with a discussion on stress testing.

2 BACKGROUND
Ever since the onset of the COVID-19 pandemic, countless web-
based dashboards have been developed to track the development of
COVID-19 at the local, national or global level. Most governmental
agencies (e.g., Centers for Disease Control and Prevention (CDC),
state or county health agency) use web-based dashboards to release
the latest information about COVID-19 to the public. It does not
take long for researchers and decision makers to realize the need
for a more comprehensive platform that can collect, aggregate,
visualize, and predict the dynamics of COVID-19 using various
scattered data sources.

One of the most widely referenced platforms is the web-based
dashboard from Johns Hopkins University[8], which tracks the
latest number of COVID-19 cases and deaths around the world, at
different spatial granularities for different countries. It functions
both as an authoritative COVID-19 data curator and a basic tracking
tool with visualizations from ESRI. The New York Times[25] also
developed a dashboard that offers similar functions. There are many
other web-based platforms that visualize and track different aspects
of the pandemic, e.g., the spread and evolution of different strains
of SARS-CoV-2[14], real-time symptom and public behavior sur-
vey around the world[6, 11], online conversation and information
spread[22], healthcare system capacity[2], and human mobility[9].
Most of these tools focus on a relatively narrow aspect of a large
system, and lack a predictive analysis capability. In this work, we
have developed a geospatial platform that provides real-time situa-
tional awareness, prediction, and simulation results generated by
different laboratories. More importantly, it conflates disparate data
sources to depict a story with context rather than mere statistics.

For all emergency response analytic platforms, context is a criti-
cal component of communication. As stated in [26], "Geography
and history offer unique perspectives on context through study of
the interconnectedness of phenomena, events, and places across
multiple spatial and temporal scales through which situations are
understood." For COVID-19, this means effectively communicating
information beyond case counts and deaths. Providing geographic
and historical information relating to the spread of the pandemic is
important. Furthermore, context surrounding COVID-19 extends to
supporting information like hospitalizations, where and how much
people are traveling to public/commercial spaces, school closures,
and more. To that end, the front-end visual portion of many COVID-
19 dashboards contextualize the pandemic by including map views

with multiple layers, supported by various graphs, charts, and tables
all with historical and current data, with which users can interact.

The proposed platform is built on lambda architecture[17] allow-
ing a way of processing massive quantities of data that provides
access to batch-processing and stream-processing methods with
a hybrid approach. The lambda architecture itself is composed of
3 layers: batch, serving, and stream. The platform benefits from
this approach, when combining archive data with streaming data
that the platform collects. In addition, the platform incorporates
the features of hyper-scaling architecture[4] that can benefit from
expanding both compute and storage power as required. Besides
these, there exists a plethora of architectures such as kappa[18],
derived from lambda architecture and less complex to deploy in
real-world, Apache Hadoop[15], Apache Spark[27], among others.
There are more architectures, we keep the details limited, and for
more information review[21, 24].

Besides high-availability, another important measure of success
for any scalable architecture is its ability to maintain low latency
during I/O intensive operations. Distributed Caching Mechanisms
(DCM) that stores large amounts of data in the memory of more
than one machine offers to bridge the gap and improves the latency.
Information-centric networking[28] is one of the best examples
of a distributed cache implementation that focuses on location-
independent content sharing across the planet. There are four types
of DCMs, that includes cache aside, read-through cache, write-
through cache and write-back. These approaches are application
and scenario dependent on maximizing the application throughput.
Open source implementation of DCMs are widely available, such as
Hazelcast, Memcache, and Redis, among others[23]. These are data
agnostic and their effectiveness depends on the implementation.
The proposed platform uses a combination of write through caching
for improving the performance of temporally located data.

3 ARCHITECTURE
This platform is built on the principles of lambda[17] and hyperscale[4]
architecture to address the challenges of combining disparate data
sources and dynamically scale to address computational challenges.
The architecture benefits from the use of widely available off the
shelf servers and computational equipment. The biggest benefit lies
in the ability to scale the platform as a function of load and latency
to accommodate additional users and requests. The architecture
can be scaled both vertically and horizontally, maximizing in-built
fault tolerance and cost-effectiveness.

The proposed architecture is shown in Figure-1 that includes
data collection and processing, distributed data grid to expedite
the data transfer and reduce latency, application server interface,
machine learning, and data quality evaluation. The remainder of
this section discusses these in more detail.

3.1 Data Collection
The first step in release planning is the collection and curation
of high-quality authoritative data. This involves discovering rel-
evant data source(s), sanitizing and transforming the new data,
de-duplicating, and semantically conflating it with other existing
data sources. The data collection’s geographic coverage is the en-
tire planet and the spatial granularity goes to the county or even
census block group level. Besides, data gathering should be done in
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Figure 1: COVID 19 platform architecture
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Figure 2: Unified mapping format for disparate data sources

real-time and continuously for the currency of insights. On aver-
age, over 100 data sources were searched daily and several million
records were collected. At this scale, data curation efforts must be
automated with a human in the loop only when necessary.

A universal attribution format was designed to unify disparate
data sources (X ∈ {x1,x2,x3, ...xm }) and a translation engine (Θ)
is developed to map attributes of disparate data sources to the
universal format data (Y ∈ {y1,y2,y3, ...ys }). For each data source,
a separate sequence of translations (Θ ∈ { f1, f2, f3, ... fm }) were
designed such that each uniquely maps to universal data format as,

fi : xi → Y (1)

where each data source xi has k attributes, xi ∈ {x1
i ,x

2
i ,x

3
i , ...x

p
i }

that maps to Y s attributes, such that p ≤ q ≤ r ≤ s , as shown in
Figure 2. This was an important step to be performed so aggregate

statistics and visualization from disparate data sources can be done
seemliness manner.

3.2 Data Processing and Analytic
Developers use RESTful APIs to access the data for processing and
generating analytics. Also, boilerplate templates are made available
for developers to generate analytics via natural language processing
and machine learning. Besides authoritative data, the platform also
harvests social media data (e.g. twitter) to gather information about
infection spread and response. Classification models can be built to
evaluate communication and assess their impact on health. Rigorous
benchmarks that include, quality control, tuning and maturity of
results are evaluated before releasing the results.

Figure 3: Missing data in time-series
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3.3 Quality Assurance Quality Control
A suite of spatio-temporal and statistical data processing templates
are developed to gather insights from the data. In addition, visual-
ization packages such as Vega and custom ensemble visualization
are integrated in the platform to allow the development of interac-
tive dashboards and processing of reports. At times, the platform
ingests direct results of simulation[10] or predictive models[16] for
the purpose of visualization.

Algorithm 1: Algorithm for server-side HyperCache
Function Remove(key) return value

Data: Distributed map
Result: value of element to be removed
acquire_lock();
value ←− remove(hmap,key) ;
if value != null then

return value;
sync_cache() ;
wait();

else
return null ;

release_lock();
Function Update(key, value) return result

Data: Distributed map
Result: value of element to be updated
acquire_lock();
result ←− update(hmap,key) ;
if result != 1 then

return f alse;
else

return true ;
sync_cache() ;
wait() ;
release_lock();

3.4 Distributed HyperCache
Developing elastic architectures that scale as a function of an evolv-
ing computing workload is essential for real-time applications.
Significant advances have been made in hyper-scalable storage,
data centers, and cloud computing infrastructure to accommodate
the exponential increase of such workload. In this architecture,
we utilize the distributed memory of nodes to improve storage
latency that is processing and simultaneously retrieving a large
amount of disparate data for real-time analysis. HyperCache is
implemented in the form of an In-Memory Distributed Grid and
is built on the top of the Direct-Attached Storage (DAS) comput-
ing cluster running simultaneous applications. These applications
communicate with HyperCache via client-server architecture for
maximum compatibility. A monitoring system is developed and
deployed for performance bench-marking and providing essential
support during exponential data compute workloads. A simple

Figure 4: Replication of an index across six nodes.

representation of adding/updating and removing the element in
HyperCache is shown in Algorithm-1.

3.5 Replicated Data Management
In this section, we discuss fault tolerance and approaches taken to
ensure the platform remains accessible and robust when it is needed
most. The platform manages its data integrity through replication
across multiple servers. As shown in Figure 4, a database index is
broken down in four primary shards (pieces) and four replicated
shards. They are distributed across six nodes in such a way that if
any machine is down or corruption, the database can still be rebuilt
and no data loss occurs. The global consistency is maintained by
frequently broadcasting updates and propagating them on all the
nodes.

3.5.1 Serialization and Optimistic Concurrency. The management
and consistency of aforementioned replicated data is achieved
through serialization with optimistic concurrency control, such that
the execution of a set of parallel data operations (transactions) must
be equivalent to a serial execution of the same data operation[5].
Consider Γ = {t0, t1, ..., tm } is a set of parallel transactions. Then,
for each transaction, ti , let Ri is the read set andWi is write set re-
spectively for ti . For example, in parallel when ti → tj occurs, then
ti must come before tj equivalent in a serial transaction. Optimistic
concurrency protocol ensures that any execution if not consistent
is aborted based on the timestamp. A workspace is maintained for
each transaction that later on executed to maintain long-term data
consistency. This mean, sometimes user request response includes
cached results that are not fully updated. Broadly, for three transac-
tions t0, t1, t2 such that their respective timestamps are t0 < t1 < t2,
the operations on a shared object occur in increasing order of the
timestamp. Recent transactions (smaller timestamp) wait for older
transaction (large timestamp) to finish to maintain data integrity.
If an older transaction with larger timestamp (e.g. r2) encounters
a younger transaction (e.g. t0), the previous dies and restarts with
a smaller timestamp. This approach avoids potential deadlocks,
as the execution of transactions are based on increasing order of
timestamps.

The optimistic concurrency is broken down in three phases - i)
execution phase, ii) validation phase, and iii) update phase. It begins
by assigning each transaction ti a timestamp TSi at the start of
the transaction and TVi at the beginning of validation. It’s read as
assigned as Ri and written are assigned asWi in this phase. In exe-
cution phase, a local workspace is created for each transaction with
shadow copies of object to be updated. These objects are updated
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Figure 5: Optimistic Concurrency Control to store and visu-
alize real-time data ingestion

locally and assigned a version number. In case of abort, the trans-
action is cancelled and the workspace is deleted. Otherwise, the
transaction moves to next phase. In validation phase, mutual consis-
tency among this and the distributed transactions is performed at
remote locations to ensure serializability. The validation between
two transactions (Say ti and tk ) is achieved as follows-
• Validation of transaction ti is not accepted if TVi < TVk .
• Validation of transaction ti is accepted if it does not overlap
with any tk .
• The execution phase of ti can overlap with update phase of
tk , given it completes its update phase beforeTVi . Validation
of ti is accepted if Ri ∩Wk = �.
• The execution phase of ti overlaps with the validation and
update phase of tk , and tk completes its execution phase
before TSi . Validation of ti is accepted if Ri ∩Wk = � and
Wi ∩Wk = �.

The details of these stages are shown in Figure 5. In update phase,
the changes to the data objects are made permanent and propagated
across the cluster and in persistent memory and storage.

3.5.2 Disaster Recovery Plan. Besides replicating the data across
the cluster onsite, a remote disaster recovery site was also deployed
to keep operations running in case of major failures (such as natural
disaster). We utilized Google Cloud Platform as Disaster Recovery
as a Service (DRaaS) to snapshot and backup the status of current
database every four hours on google cloud. Since, the snapshots are
not instantaneous, take time to complete and asynchronous with
respect to time and data integrity. This approach uses incremental
backup strategies to save change quickly and efficiently. The cloud
only serves as a remote location to store the data and serves as a
backup. When snapshot is in-progress, it is still possible to add new
data and make other requests to the cluster.

3.6 Data and Analytic Quality Control
Data quality and analytics are evaluated to ensure insights are scien-
tifically accurate. The data curation task uses authoritative sources
(such as CDC, JHU, etc.), reducing issues related to accuracy. How-
ever, curation issues occur when data attribution format changes
(e.g. new attribute is added), network connectivity (intermittent dis-
connection, synchronization issue because of latency), among other
issues. An example of Not missing at random (NMAR) data[20]
in univariate time series of COVID-19 case counts are shown in
Figure 3. In the figure, the probability for a missing observation
depends on the value of the observation itself (the observations
are not recorded because of a network error)[13]. If needed, linear
interpolation or arithmetic smoothing is used to rectify the missing

data in time series. Besides, the process also benefits from review by
subject matter experts (epidemiologists, geographers, statisticians)
from time to time.

3.7 Application Server and End User
The application server holds the core deployment of the application.
We have used a load balancer with the multi-instance deployment
of an application server for fail-over and load distribution. The
platform is deployed at https://covid19.ornl.gov can be accessed via
a web browser or through integrating RESTful services. A user au-
thentication mechanism is implemented to secure and limit access
to authorized users only. In section 7, we demonstrate an approach
to extend the platform connecting ESRI services and the develop-
ment of the story-telling feature.

4 RELEASE PLAN
The on-set and rapid spread of COVID-19 created an immediate
need to deploy a reliable and stable situational awareness platform
accommodating inputs generated by several research entities. It
was critically important that this platform should display key sci-
entific findings for policy guidance and informed decision making
within a given schedule, quality, and effort constraints. This led us
to formalize a systematic release plan workflow for the selection
and development of features and their incremental release at a reg-
ular interval. Each release addresses the production of meaningful
insights and new features developed by the participating research
entities. This also allowed all the moving parts of the collaboration
to work in sync, work towards a common goal, and for the end-user
base to anticipate the changes and new updates. The release plan
workflow is shown in Figure 6. The platform also monitors the
usage of its services, detection of spurious activities, report genera-
tion, and allocating resources to allow a third-party application to
utilize analytics and data stream. The post-deploy release step is
useful toward extending the platform and for measuring the use.

5 VISUALIZATION
The visualization technology we use to display the data in this
platform is Kibana, an open source data visualization platform
from the Elastic stack. It provides a variety of standard charts,
time series graphs, geospatial visualizations, and support for Vega
visualizations. In addition, we have developed custom visualizations
that we integrate as plug-ins. The user-facing part of this platform
is organized as a series of dashboards.

5.1 Dashboards
In an effort to effectively organize, explore, and reflect the different
uses of a large and varied volume of data ingested into the plat-
form, we created several dashboards. These dashboards include a
Situational Awareness dashboard (displaying current and histor-
ical data from global, to US state and county spatial resolutions),
a Predictive Analytics dashboard (displaying multiple predictive
models at national, state, and county levels), and more. Some of
these dashboard provide high-level overviews, others provide a
deep-dive into a particular aspect, or even one specific model or
data feature.

47

https://covid19.ornl.gov


COVID-19, November 3, 2020, Seattle, WA, USA Thakur and Sparks, et al.

CURATE

•JHU
•WSTAMP
•IHME
•Testing 
•Mobility
•(EpiGrid)

DEVELOP

•Integrate
•Build Visualization
•Build Dashboard
•Legends
•Stories

QAQC

•Validate statistics
•Subject matter 
expert analysis

DEPLOY

•Migrate to public 
spaces

RELEASE

•Monitoring
•Report 
generation

•RESTful service 
implementation  

Figure 6: COVID 19 Release Plan Workflow

Incoming data’s spatial resolution varies from national, state,
county, and city. Temporal resolution ranges from daily, weekly,
and monthly time steps. Data updates occur at a variety of times,
from static-single upload data layers, to daily updates, to a few
updates a month. As such, merging multiple data products into
a simple, cohesive view was a challenge. Furthermore, designing
visualizations to be responsive to global user input and querying
when existing in different spatial and temporal resolutions required
careful consideration during data processing, storage, and visual-
ization.

When possible, we attempted to maintain thematic consistency
for the purposes of intuitive user experience. Most dashboards
consist of interactive maps, time series graphs, and basic charts.
Map layers have zoom-dependent views from country, to state, to
county. For each layer, we define an appropriate aggregation type
(e.g. sum, maximum, etc) depending on the variable presented. To
further create a sense of cohesion between dashboards, we attempt
to use color as a guide: Similar data is shown in similar colors
where possible. For categorical data, we use custom colormaps that
represent the type of data appropriately.

In addition to the utilizing Kibana’s standard visualizations, we
also leverage its support for Vega, a declarative language for web-
based visualizations. Vega allows us to create a wider variety of
visualizations for the platform and gives us the flexibility to further
customize visualizations. For example, in Figure 7 we use Vega to
visualize R-naught estimates for the contiguous U.S., Alaska, and
Hawaii at the county-level in a single map view. The diverging
color scheme provides users with an at-a-glance view of counties
experiencing reproduction rates above or below 1, and the hover-
over tooltip functionality lets them quickly see the data behind the
map. This and other Vega visualizations on the platform query the
most recent data from Elasticsearch indices and are configured to
respect global filters selected by the user, which allows for seamless
and responsive integration with other charts in Kibana dashboards.

5.2 Visualization for Situational Awareness
To illustrate situational awareness (Figure 8), we prioritized the
display of current and historical data and analytics regarding case
counts, deaths, testing, and various mobility metrics. For example,
using daily case counts, we displayed up to date cumulative cases,
new case rates, cases per capita, results from transmission rate mod-
els, and more. We provided supporting data to illustrate variables
that likely influence case counts and deaths. These largely included
various measurements of social reaction to the pandemic, including

Figure 7: County-level map of R-naught estimates with
tooltip functionality. Built with Vega.

dates of school closures, general mobility indices at the national,
state and county scales, transportation intensity, and more. Possible
user interactions include selectable map layers (country, state, and
county scales), dynamically updating map layers based on zoom
level, country/state/county term filters, and hover-over tooltips.

5.3 Forecasting and Predictive Visualization
We accumulated multiple predictive models from public (national
laboratories) and private industries, that provided near future es-
timations on case counts, deaths, hospitalizations, intensive care
patients, and more. Figure 9 shows filtered visualization of mech-
anistic model outputs [19] with different resolutions, including
state and US metropolitan statistical area (MSA). For example, Fig-
ure 9a shows predictions for new cases in Alabama and Figure 9a
shows predictions for new cases in Atlanta, Georgia. Note that
Figure 9 show the results generated on September 6th, 2020. When
the spatial scale and temporal resolution of predictive models were
consistent with one another, attempts were made to group these
model outputs into a single visualization. Otherwise, model out-
puts were placed side by side for comparison. All available model
outputs were displayed in the dashboard, and users had the ability
to filter results by state or county.

5.4 Visualization for Simulation Results
We created dashboards for EpiGrid and EpiCast [10] simulation
results that were produced specifically in the context of this project.
For each model, we developed a custom processing workflowwhich
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Figure 8: Situational Awareness Dashboard.

converts the model outputs from their respective formats into a
common format that is ingestible into ElasticSearch.

Since aggregations for map layers require incident data, but both
models report cumulative infected individuals, we also computed
the daily increase in cases as part of our workflow. This allows us
to select a start date and end date and produce an accurate count
of new cases that were predicted within the given timeframe.

EpiGrid focuses on different stages of infections from first expo-
sure, infectiousness (with isolation status to account for quarantine),
requiring hospitalization (with differentiation on whether or not
they receive it to model healthcare availability), recoveries, and
deaths. EpiCast focuses more on the severity of symptoms with
more detailed outputs for hospitalized individuals. It provides out-
puts for symptomatic, hospitalized, in Intensive Care Unit (ICU),
and requiring a ventilator. Unlike EpiGrid, it does not provide re-
coveries or deaths.

The dashboards for both models are similar, with general infor-
mation about the model, interactive elements for filtering, a map,
and a side bar with instructions, information about layers, and leg-
ends. The blue section in Figure 10 shows the top section of the
EpiCast dashboard with a view of predicted county-level data of
individuals in the ICU on the map. The green section of Figure 10
shows a sample of visualizations from the EpiGrid dashboard for
a subset of states (Georgia, Kansas, New Mexico, and New York),
curves for each case type, and a comparison with ground truth data

(a) New cases predictions for Alabama

(b) New cases predictions for Atlanta

Figure 9: Mechanistic model visualization.

from the New York Times dataset [25]. In the pink section of Fig-
ure 10 we show a comparison of different model output parameters
using the same colormaps as other dashboards (cases = yellow/red,
recovered = green, death = black/gray) for some counties in New
York. The data for this model run does not cover all counties of each
state, which reflects in the comparison chart (top right in green
section): the predicted case number (blue) is much lower than the
actual case number (red).

6 HOTSPOT DETECTION
Spatial hotspot analysis can identify clustering areas of a spatial
phenomenon. To help decision makers better understand the geo-
graphic patterns of the COVID-19 in the US, we have developed a
hotspot detection module in our platform. For this initial version,
we have selected two metrics (cases per 100k population and deaths
per 100k population) that capture the prevalence and seriousness of
COVID-19 in a region. In the future, the hotspot detection module
can easily be extended to detect hotspots for other types of met-
rics (e.g, positive rate of testing, hospitalization). The raw data for
hotspot detection is collected from Johns Hopkins University (JHU)
Data Repository, which provides daily update of confirmed positive
cases, deaths for the US at county level. The raw data is cleaned and
then joined with census data to provide population data, with US
county shape file to provide spatial information. For each county,
we then calculated the confirmed case per 100k population and deaths
per 100k population.
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Figure 10: Simulation dashboard layout and some example
visualizations from the EpiCast (blue section) and EpiGrid
(green and pink sections) dashboards.

6.1 Hotspot detection algorithm
The hotspot detection algorithm uses the Getis-Ord Gi* statistic
[12], which works by looking at each county within the context of
neighboring counties as well as the national average, to determine
whether a county is a hotspot or not.
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In equation 2, n is the total number of features, x j is the attribute
value of target feature andwi, j is the spatial weight between feature
i and j. As we can see from equation 2, Gi* statistic accounts for
both national average and neighborhood average. A county that
has a high value and is surrounded by other counties with high
values as well is a statistically significant hot spot.

6.2 Hotspot visualization
The Gi* statistic calculated for each county is a z-score. If the z-
score is statistically significant, the larger the z-score is, the higher
confidence we have about the clustering of high values (hot spot).
Since the significance of each county is tested individually during
the hotspot detection, there could be false positive due to multiple

(a)

(b)

Figure 11: Hotspot visualization.(a) case per 100k popula-
tion. (b) death per 100k population.

testing. Therefore, we have to calculate the corrected p-value cut-
off to correct the bias of multiple testing [3]. The corrected p-value
is used for hotspot visualization in our platform.

7 EXTENDING THE PLATFORM
In an effort to add extensibility to the platform and allow additional
flexibility in web visualization, middle-ware was developed and
added to the COVID-19 platform. The middle-ware is based off of
the open source project Koop developed by Esri. Koop is a Node.js
web server that translates GeoJSON stored in native formats and
locations into RESTful Web services. Using the ElasticSearch plugin,
Koop was integrated with the existing COVID-19 platform. The
output from Koop is Web Feature Services (WFS) which are usable
by many web mapping platforms and frameworks. In this case, the
WFS generated from Koop are used in a deployment of ArcGIS
Enterprise where visualization products including web maps and
web mapping applications are created and deployed.
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Figure 12: Koop architecture

7.1 Design: Extending Koop
As previously mentioned, Koop with the ElasticSearch plugin, was
used to extend the COVID-19 platform, but additional functionality
was also developed to customize Koop to fit specific needswithin the
platform. Koop expects the data being queried to follow the right-
hand rule which is a GeoJSON standard that mandates coordinates
of exterior rings of a polygon be formatted in a counterclockwise
order. Some indices in the COVID-19 ElasticSearch do not follow
this standard so functionality was added to reverse the order of the
coordinates when necessary. In Figure 12, we show the architecture
to connect with COVID-19 platform.

There was also an issue of indices having multiple documents
representing the same geometry resulting in a WFS with stacked
features. Functionality was developed to allow a service to be con-
figured to only return a single geometry in cases of redundant
geometries. The attribution to be returned is also configurable, but
as it relates to the COVID-19 platform, the document with the most
current date is returned in the case of stacked geometries.

Koop was also extended to account for cases where an index did
not include and geometry but had geographic context (e.g county
name, state name, FIPS). An additional feature was developed to
allow joining the attribution of an index to the geometry of another
index. The COVID-19 platform includes indices for both county and
state geometries which were used to add geometry to non-spatial
indices that had a geographic indicator, in most cases FIPS values.

7.2 Deployment
Because Koop is a simple and lightweight Node.js web server there
are many options for deployment that offers flexibility and scalabil-
ity. One limiting factor, however, is that Koop is single threaded and
performance degrades as more services are being generated and
used in front end applications. To counteract this, Docker was used
to deploy multiple instances of Koop. The deployment strategy was
to have a separate Docker container for each WFS output. In some
cases, this included multiple containers and services for a single
ElasticSearch index.

7.3 Use Case
The extended version of Koop deployed on an array of Docker
containers was used to integrate the COVID-19 Platform to a de-
ployment of ArcGIS Enterprise. ArcGIS Enterprise includes ArcGIS
Portal which allows users to create and share maps and applica-
tions. The WFS generated from Koop that has been configured

to the COVID-19 platform’s ElasticSearch instance can be added
directly into a web map or web mapping application in ArcGIS
Portal seamlessly. An application was developed to give a national
overview of the current state of the COVID-19 crisis. Also, a state
level application was also created to provide a more detailed look at
the situation. Both of these applications leverages openly available
services, services generated from ArcGIS Enterprise, and services
coming from Koop and the COVID-19 platform.

8 PERFORMANCE AND LOAD TESTING
The platform’s stability and reliability is evaluated using a suite of
non-functional tests that specifically evaluates the readiness of a
system. Some examples include load testing, performance testing,
availability testing, etc. This is achieved to determine a platform’s
behavior under both normal and at peak conditions. For this study,
we perform load testing to evaluate simultaneous user access and
measure network performance.

8.1 Basics
For load testing the COVID-19 platform, k6[1] was used, an open-
source load testing tool. To visualize and track load testing metrics
on the VM hosts, Prometheus and Grafana were deployed for col-
lection and visualization of the metrics. To generate host metrics,
Node Exporter provided a way to constantly expose metrics over a
port number and Prometheus was then configured to scrape those
metrics by providing the target IPs to Prometheus’ configuration.
The community dashboards available for Node Exporter provided
visualization of the VM specific metrics. The official k6 Grafana
dashboard provided details of the load test, including HTTP request
durations, HTTP requests per second, etc. An InfluxDB instance
was created as well, as k6 provides native support on sending met-
rics directly to InfluxDB.

8.2 Approach
To create the capable script to be used by k6, its recorder chrome
plugin was used to record browser actions and convert them to
the script. This included logging in and loading various layers in
Kibana dashboards. After modifying the scripts to allow variable
overrides, a Docker container was created that loaded the scripts vi
CI/CD in GitLab. Then using a batch job deployment in Kubernetes,
the load test could begin with various user count simulation and
duration. Running this as a Kubernetes job offered the capability to
scale the job, deploying multiple parallel running containers. This
was used to generate load on the system with environment variable
overrides selecting user count simulation and duration of the test.
This also permitted the selection of various scripts available in the
container for different dashboards within covid19.ornl.gov, without
the need of multiple unique docker images.

8.3 Benchmark Results
Our test methodology was to generate load to certify that the
COVID19 website was capable of supporting 1,000 simultaneous
users. The load testing was run in four stages: 100, 250, 500, and
1,000 simultaneous users. In Figure-13, requests per second gen-
erated by 1,000 users is shown. The performance was as expected
with low latency and higher throughput as show in Figure-14.
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Figure 13: Loading testing for 1000 user shows number of
request simulated per unit time.

Figure 14: Request frequency and performance latency

We ran a peak test at 1500 users to determine how the system
would behave and if performance would degrade beyond the 1000
user limit. Apache reverse proxy was unable to process more than
1,024 users and should be replaced with HAProxy or another proxy
engine should the number of simultaneous users exceed 1000.

9 CONCLUSION
In this work, we discussed the development of an all-encompassing
operational platform for non-pharmaceutical interventions to the
COVID-19 pandemic. The platform is deployed at https://covid19.
ornl.gov/ and accessible to authorized users. The underlying scal-
able architecture supports an end to end workflow for joint pan-
demic modeling and analysis towards policy guidance and decision
making. Custom visualizations are added to display a complex re-
lationship among various data set and the user-facing part of this
platform is organized as a series of dashboards. We hope the inte-
gration of various datasets, predictions, and simulation results will
provide a complete picture to decision-makers for policy guidance.
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ABSTRACT
CoronaViz (http://coronaviz.umiacs.io) is a research prototype de-
veloped by us to enable the dynamic map visualization of COVID-19
related variables including the number of confirmed cases, active
cases, recoveries, and deaths all on a daily basis from the Johns
Hopkins University web site at ter.ps/coronajhu, by allowing the
underlying spatial region and the spanned time interval to vary.
Any combination of the variables can be viewed. subject to a possi-
bility of clutter which is avoided by the use of concentric circles
(termed geo-circles) whose radius values correspond to the variable
values. The variable values are provided both on cumulative and
day-by-day bases. The visualization enables spatial and temporal
variation.
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1 INTRODUCTION
CoronaViz (http://coronaviz.umiacs.io) is a research prototype de-
veloped at the University of Maryland to enable the dynamic map
visualization of COVID-19 related variables including the number of
confirmed cases, active cases, recoveries, and deaths all on a daily ba-
sis from the Johns Hopkins University web site at ter.ps/coronajhu,
by allowing the underlying spatial region and the spanned time
interval to vary. Any combination of the variables can be viewed.
subject to a possibility of clutter which is avoided by the use of con-
centric circles (termed geo-circles) whose radius values correspond
to the variable values. The variable values are provided both on cu-
mulative and day-by-day bases. Some like the number of confirmed
cases and deaths are also reported as a result of normalization with
respect to a measure such as per 100,000 inhabitants (termed an
incidence rate). Others like the number of deaths are normalized
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with respect to the number of confirmed cases (termed a mortality
rate). The visualization enables spatial and temporal variation.

CoronaViz was motivated by the continuing spread of COVID-19
which led to the desire to track its progress over time to be better
prepared to anticipate its emergence in new regions. There exist
numerous systems to monitor and map officially released numbers
of cases [3], which are the current established means of keeping
track of the progress of the virus. However, as we mentioned ear-
lier, these systems do not necessarily paint a complete picture. For
example, they are primarily mashups in that they do not support
zooming in on the map in the sense that they just increase the
resolution of the map but do not show the data for the additional
units (e.g., states/provinces, counties, etc.) that have become visible
as a result of the zoom. The visualization enables the comparison
of disease-related variables pairwise or region-wise. Particular at-
tention is paid to proper scaling of the disease-related variables
so that we can visualize them even if they are all small values or
large values in terms of magnitude. To run the system, preferably
using the Google Chrome or Microsoft Edge browsers on a laptop
or desktop, go to http://coronaviz.umiacs.io

The rest of this paper is organized as follows. Section 2 discusses
the queries our system is able to support. Section 3 reviews related
work by discussing existing disease monitoring systems. Section 4
describes the CoronaViz user interface, while Section 5 provides
examples of the use of CoronaViz that highlight its utility. Section 6
contains concluding remarks and discusses directions for future
work.

2 QUERIES
The values of all of the variables in CoronaViz are presented in a
time-varying manner as time moves on with the aid of a time slider
thereby leading them to be characterized as dynamic variables. This
is in contrast to visualization tools where such variables are pre-
sented in a graph where time is the horizontal axis and the variable
value is the vertical axis thereby leading them to be characterized
as static. Thus we see that the presentation manner is the key to
the characterization. It is not easy to present several static variables
as they tend to clutter the display regardless of whether they are
represented as one graph for the set of all variables or one graph
per variable. The situation becomes more complex when values of
the variables vary in a spatially-varying manner. In this case the
only way to deal with the static variables is to repeat the graph at
each location. This is OK when the data is spatially sparse but this
is not something we can count on.
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In contrast, CoronaViz deals with variables that are both time-
varying and spatially varying by re-examining the dimensionality
of the data in the sense that a time slider is a natural representation
of one-dimensional data (i.e., time) while a two-dimensional map is
a natural representation of two-dimensional data. The problem is
how we represent the values of the variables. One possible solution
is via a histogram but this leads to clutter on the display and is
cumbersome when the data is not spatially sparse. Moreover, there
may be a layout problem here in the sense that we cannot allow the
histograms to overlap. An alternative common solution with the
same overlap issues is to use solid concentric circles where the radii
of the circles correspond to the value and the color corresponds to
the identity of the variable. This type of visualization is known in
cartography as a proportional symbol map [7]. The problem here
is when we have multiple dynamic variables as is the case for our
application, then only the one with the largest magnitude can be
viewed. One solution is to vary the colors of the circles but if this
method is used, then we must pay close attention to the order
in which we display the circles so that the one with the largest
radius is displayed first and the remaining circles be displayed in
decreasing order of radius values (this is analogous to the “back-to-
front” z-buffer display algorithm used in computer graphics). We
can avoid the need to worry about the order in which we display
the circles by using hollow concentric circles where again the color
indicates the identity of the variable while the radius corresponds to
a scaled variable magnitude. We use the term geo-circle to describe
this approach.

The visual strain posed by having a large number of circles can
be relieved by drawing the circles using broken lines of the same
width. At times, the width of the broken lines can be increased
with the goal of drawing attention to a particular set of concentric
circles (i.e., a location whose variable values at a particular instance
of time) which is of interest. We do this in the case of a hover
operation while panning on the map to show the spatially closest
location with nonzero variable values. This operation is common
in computer graphics where it is known as a “pick” operation (e.g.,
see [5]). However, care must be exercised when implementing it
in the sense that we don’t always want the closest geo-circle. For
example if we are hovering in Brazil, then we want the geo-circle
of Brazil even though the geo-circles of Paraguay or Bolivia may
be closer to the hover location in Brazil.

CoronaViz makes use of 7 dynamic variables comparing the
number of confirmed cases. active cases, recoveries (although not
reported by all jurisdictions), and deaths, as well as normalized
variants which include the incidence rate (number of confirmed
cases per 100,000 inhabitants), mortality rate (number of deaths
divided by the number of confirmed cases), and the recovery rate
(number of recoveries divided by the sum of the numbers of deaths
and recoveries). No active rate is tabulated as the number of active
cases is simply the number of confirmed cases minus the number
of deaths and recoveries and thus the only possible rate measure is
a normalized active cases value per 100,000 inhabitants which is
similar to the incidence rate and thus we do not provide it. Concen-
tric circles (i.e., geo-circles) drawn with broken lines are used for
th 4 disease related variable values while concentric circles drawn
with solid lines are used for the 3 disease related rates. They are

drawn with different colors with the same color being used for the
corresponding variable and rate.

The concentric circles make it easy to spot trends and similar
values on the map by looking at the magnitude of the radii. Other
observations of interest involve trends such as noting lower con-
firmed case and death counts over time as the circles get smaller.
Another encouraging trend is when confirmed case counts become
smaller than death counts. Of particular interest is the situation
when concentric circles intersect and change their relative order. Of
course this must be treated with caution as the magnitudes of the
variables change). In particular, of a comparison is only meaningful
when comparing variable values and not rates.

There are a number of ways of presenting the variable values.
The default in our case is of a cumulative nature. However, it is
possible to normalize the values over population, or even area.
Normalizing over the area is of possible interest as it could be used
to see if densely populated areas are more likely to lead to a higher
number of confirmed cases of COVID-19 and deaths.

Our goal is to endowCoronaViz with a full compliment of queries
that are consistent with its role as a spatiotemporal database. First
of all, we have two types of queries:

(1) location-based: given a location or time, what are the values
of certain variables and rates.

(2) feature-based: given a variable or rate value, where or when
is its value present. This is also known as spatial data min-
ing [2]. In CoronaViz we might be looking for locations or
time instances where there are no deaths.

The location-based queries are supported by the ability to pan
the map with a hover operation and always returning the variable
values with the nearest location for which we have data. Coron-
aViz supports this query by a PR quadtree where we have one PR
quadtree for each of the disease-related dynamic queries or variables
or rates. Feature-based queries require the use of a pyramid-like
data structure on each of the disease-related dynamic queries or
variables or rates.

The animation window is a very important feature as it enables
the execution of a range query where the range is temporal. Users
can vary the start and end times of the query as well as the anima-
tion step size. In addition, users can specify what statistic is being
computed for the temporal window. It can be cumulative, or a time
period whose length can be in terms of days, weeks, months, or
even years. Average values for the window can also be computed.
This is particularly useful for the “reopen” discussion which is often
based on a rolling weekly daily average computation involving the
number of confirmed cases.

Spatial range (also known as window) queries are of great in-
terest. In this case, users use pan and zoom operations to get a
map that is focused on a particular desired spatial region (e.g., the
minimum bounding areal box that contains Italy). Note that here
we find overlap with San Marino and the Holy See (i.e., the Vatican
in Rome). In particular, we have one geo-circle that displays the
sum of the values of the dynamic variables for all three of these
spatial entities. In order to restrict the visualization to Italy, users
must zoom in further so that San Marino and the Holy See are not
in the window (i.e., the displayed geo-circle). Alternatively if users
only want the Italy, then they could simply pose the textual query
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with “Italy” as the search string as well as the name of a region
such as “Liguria” or city such as “Genoa” for which appropriate
indexes exist. Note that as Coronaviz zooms into a region, it has
access to more data (as low as county or city level data).

CoronaViz enables the execution of the full compliment of spa-
tiotemporal queries as it supports keeping location fixed while
varying time via the time slider, keeping time fixed and letting loca-
tion vary via the hover, panning, and zooming operations. We can
also pick any range of time or space. Users can also take advantage
of spatial synonyms when they don’t know the exact name of the
location of interest. For example, when seeking a “Rock Concert in
Manhattan,” concerts in Harlem, New York City, and Brooklyn are
all good answers because of being contained in Manhattan, contain-
ing Manhattan, and being a spatially adjacent borough, respectively.
This is an example of a proximity query which we saw previously
via the use of a hover operation in the case of spatial proximity,
and the time slider in the case of temporal proximity. Note that for
temporal proximity, we provide the capability to halt an animation
at arbitrary time instances as well as resuming or terminating it.
In addition, users are also able to set the speed of the animation,
as well as to step through an animation by a specific time interval
both forward and backward in time.

3 RELATEDWORK
In this section we first briefly consider prior work dealing with
the visualization spatiotemporal data and then review a number of
existing systems designed specifically for monitoring the spread of
COVID-19.

3.1 Spatiotemporal Data Visualization
Visualization and analysis of temporally varying geospatial data is
a difficult task; as such, it has been the subject of substantial prior
work. The difficulty comes from the inherently multidimensional
nature of the data: there are at a minimum two spatial dimensions
and one temporal dimension, in addition to the dimensionality
added by the actual variables being visualized. All of these dimen-
sions must be projected onto a two dimensions screen. We can
broadly break spatiotemporal visualization techniques into two
groups: those that use animation to capture the time dimensions,
and those that attempt to encode temporally varying information
into a single static visualization.

An example of this second variant is presented by Du et al. [4]
who modify the traditional choropleth map to encode temporal
information inside each area unit. Rather than picking a single
color for each areal unit, units are divided either into bands of
either equal width or equal area. Each band is then assigned a
color in the same way areal units are assigned colors in traditional
choropleth maps (e.g. Howard et al. [7]).

Li et al. [11] do not use a fully animated approach, but neither
do they commit to showing the full temporal data range in a single
image. Instead, they use an interface termed the “Event View” to
display images generated for discrete time intervals side-by-side. To
link these images together into a single cohesive visualization, the
authors overlay a “trend line” that connects the time intervals. This
trend line is used to link events extracted by a separate component
of their system.

Very often a temporal variant of a well known cartographic
visualization technique can be obtained by applying the existing
technique to data within a timewindow for a series of timewindows.
An animation is obtained by collecting the individual visualization
and displaying them in order by time. This is approach the basis
of Ouyang and Revesz [15] who develop an algorithm to generate
spatiotemporal cartogram animations.

3.2 Existing COVID-19 Monitoring Systems
In this subsection we review a number of existing systems designed
specifically for monitoring the spread of COVID-19. These sys-
tems are described below with an emphasis on pointing out their
drawbacks thereby motivating our work in developing CoronaViz.

(1) https://coronavirus.jhu.edu/ Coronavirus COVID-19 global
cases (Johns Hopkins)

(2) https://www.healthmap.org/ncov2019/ Novel Coronavirus
(COVID-19) outbreak timeline map (HealthMap)

(3) https://news.google.com/covid19/map (Google News)
(4) https://hgis.uw.edu/virus/ Novel coronavirus infection map

(University of Washington)
(5) http://nssac.bii.virginia.edu/covid-19/dashboard/ COVID-19

surveillance dashboard (University of Virginia)
(6) https://covid19.who.int/ Novel coronavirus (COVID-19)

situation dashboard (WHO)
(7) https://www.cdc.gov/coronavirus/2019-ncov/cases-in-

us.html Coronavirus disease 2019 in the US (CDC)
(8) https://www.ecdc.europa.eu/en/geographical-distribution-

2019-ncov-cases Geographical distribution of COVID-19
cases worldwide (ECDC)

(9) https://www.kff.org/global-health-policy/fact-sheet/co
ronavirus-tracker/ COVID-19 coronavirus tracker (Kaiser
Family Foundation)

(10) https://www.worldometers.info/coronavirus/ COVID-19
coronavirus outbreak (Worldometer)

(11) https://multimedia.scmp.com/infographics/news/china/arti
cle/3047038/wuhan-virus/index.html Coronavirus: the new
disease Covid-19 explained (South China Morning Post)

(12) https://storymaps.arcgis.com/stories/4fdc0d03d3a34aa485d
e1fb0d2650ee0 Mapping the Wuhan coronavirus outbreak
(ESRI StoryMaps)

(13) https://public.flourish.studio/visualisation/1539110 (Flour-
ish)

(14) https://coronavirus.1point3acres.com/en (1point3acres)
(15) https://geods.geography.wisc.edu/covid19/physical-

distancing/ (University of Wisconsin)
The Johns Hopkins system tabulates cumulative numbers of

confirmed, active, deaths, and recoveries. The cumulative numbers
of confirmed and active cases in some of the countries are displayed
on the map for some of the larger countries (in terms of area).
A drawback of the maps is that zooming in on the map simply
increases the resolution of the map but does not show the data
for additional countries. This is a common drawback of many of
the systems that have been created for visualizing the coronavirus.
This is not the case for CoronaViz.

The HealthMap system shows the spread of the disease by tabu-
lating the number of new confirmed cases of the disease on a daily
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basis and displaying it with a circle of a particular size and color
anchored at the location where it was reported (e.g., a city, state,
country, etc.). HealthMap still has the drawback that zooming in
only increases the resolution of the map but does not show a finer
allocation of the tabulated properly to the location.

The Google News systemmakes use of a map query interface and
allows zooming in and reports the variable values for the smaller
subunits. It uses a hover operation to yield the variable values for
the spatial unit being hovered over, as well as disease-related news
at times. It does not have the ability to provide variable values for
a combination of units that make up the viewing window when
these units are small (e.g., counties) or bigger (countries) as is done
in CoronaViz. It is static as it has no temporal component other
than precomputed graphs of variable values over a predetermined
range of days unlike CoronaViz where the range is set by the user.

The University of Washington system shows the total number
of confirmed cases, deaths, and recovered for the countries of the
world as one pans the world map. For the US, zooming in has
a greater granularity and results in showing how the number of
confirmed cases are spatially distributed in each state. Descriptive
data is also provided for the confirmed individuals when the region
is sufficiently small.

The Flourish system enables the visualization of just one dynamic
variable such as the number of confirmed cases in a number of
countries at the same instance of time. Although the data is spatially-
referenced by name (i.e., the names of the countries) no use is
made of a map nor are there any input or output controls. The
one advantaged of the system is that it is fast which conveys the
urgency of the need to stop the spread of the disease.

Both the 1point3acres andWorldometer systems provide compre-
hensive data and graphs for the dynamic variables but no animation
or maps. The dynamic aspect of the variables is captured by the
various plots of the variable values and combinations thereof. They
make a distinction between cumulative variable values as well as
new values. The 1point3acres system prides itself in its data collec-
tion ability and is more focused on the virus while the Worldometer
system also provides statistics related to the impact of the disease
such as unemployment.

The University of Virginia system displays the number of cu-
mulative confirmed cases, deaths, and recovered over time using a
time slider. The countries are colored according to the range of the
number of individuals for the variable being displayed. Zooming
in results in more locations being placed on the map as well as the
inconsistent decomposition into smaller units such as states for the
US and provinces for China but not for Canada or Australia.

The remaining systems are quite similar in that they only map
the number of confirmed cases in each country in the case of the
WHO and ECDC systems and in each state for the CDC system. The
Kaiser Family Foundation system also maps the deaths. None of
the WHO, ECDC, CDC, and the Kaiser Family Foundation systems
permit zooming in to get additional data. Non-interactive maps
are used to tell the story of the coronavirus outbreak in the South
China Post using ESRI StoryMaps. Instead of the disease-related
variables some systems like that from the University of Wisconsin
look at a variable that monitors the mobility of the population with
a map query interface that makes use of cell phone data.

4 USER INTERFACE
CoronaViz’s user interface is anchored by the “Control Panel” which
is partitioned into four components corresponding to the three tasks
of the system which are data animation, location specification, and
data viewing, and help. They are accessed by appropriately named
buttons.

Figure 1a shows the incidence and mortality rates in South Amer-
ica for a 212 day wide window in an animation range spanning
from the first of this year 2020 through October 12 of the same year.
We see that the query window and the animation range are the
same, and thus no animation can be performed as we just have one
time instance and an animation requires at least two time instances.
Therefore, the result of the query is just a screenshot of the geo-
circles each one of which consists of a linearly scaled incidence rate
and a linearly scaled mortality rate corresponding to the countries
in South America. From the figure we see that the incidence rates
are relatively similar for these countries. Mortality rates are much
smaller and thus we may wish to scale them so that we can better
differentiate between them. Figures 1b-1e show the different con-
trol panels and their settings for the query whose result is shown
in Figure 1a. The different control panels are described in greater
detail in the rest of this section.

The “Animation” button controls the animation process. Coron-
aViz can be run in two animation modes: “Total” and “Window”.
In Window mode we provide a temporal region w (termed the
“Animation Window”) which is specified in terms of days, and a
location (i.e., spatial region) which is a geographic entity. In order to
simplify the explanation, we use a variant of the example query of
animating the progression of COVID-19 in Brazil (See Figure 2 for
its result) and its neighboring South American countries in terms
of the values of the confirmed cases and deaths disease-related
variables. This is done for the “Animation Range” which is set by
default to the period between the first of this year 2020 though
October 12 of the same year. The animation can provide either the
cumulative values of these variables or the daily average value for
the days making up the window w. Note that when the window
duration is one day, then the cumulative value and the average
daily rate are the same. This information is provided on a daily
basis on the last day of the animation window for each day of the
animation range. In contrast, recall that the maximum possible size
of the animation window is the duration of the animation range
in which case there is no effective animation as the result is the
cumulative value of the variables and the daily average value of the
variables over the entire “Animation Range” and only reported on
the last day of the animation window. Users don’t have to know the
value of this maximum as it is specified by checking the “Maximum”
checkbox which appears to the right of the “Window Size” in the
“Animation Control Panel”.

Users who wish to see the cumulative as well as the average daily
rates for all of the disease-related variables in an animated manner,
should use the “Total” mode. In this case, we do have an animation
on a daily basis with the final frame of the animation yielding the
cumulative values of the disease-related variables for the temporal
“Animation Range” for all spatial ranges that can be viewed. These
features are all accessed by clicking on the “Animation” button in
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(a) overview

(b) animation control panel

(c) location control panel

(d) view control panel

(e) help information

Figure 1: user interface

Figure 2: example CoronaViz screenshot
for Brazil in South America.

the “Control Panel”. Figure 2 is the final screenshot for the anima-
tion of the cumulative values of the number of confirmed cases,
deaths and recoveries for the Total mode query for the countries
in the vicinity of Brazil for the time period between the first of
this year 2020 though October 12 of the same year. In essence, the
screenshot differs from the one in Figure 1a for Figures 1b-1e by
displaying the values of the disease-related variables instead of
the rates. Note the larger geo-circles on account of no normaliza-
tion which is the case when we used rates for the disease-related
variables.

The “Location” button activates the “Location Specification” pro-
cess which identifies the spatial entity for which wewish to animate
and view the disease-related variables. This location is known as
the “Animation Focus”. It can be the name of a country/region,
state/province, or county/city all of which are obtained from an ap-
propriately named pull-downmenu. Alternatively, the geographical
entities can also be specified graphically using direct manipulation
actions like pan, zoom, and hover. In this case we usually start with
a map from which a new map is constructed using pan and zoom
operations as well as possibly dilation. Once the desired location
has been identified on the map, then a single left click on the mouse
is sufficient to initialize or reset the “Animation Focus”.

The advantage of the direct manipulation approach is that it
provides the query poser the opportunity to specify the exact shape
and boundary, as well as the resolution, of the query region. The
“Location” button can also be used in the same manner to set what
we call a “Baseline Location” for comparing disease-related data
as the animation proceeds. This location can only be set using the
pull down menus. It cannot be set using direct manipulation. As the
animation proceeds, the values of all of the disease-related variables
and rates are displayed side-by-side in the “Animation Focus Data
Panel” for the two locations.

At this point, the animation can be started by clicking on the
“Start Animation” button in the “Animation Control Panel”. In our
example, we see the animation of the progression of COVID-19
in all of the South American countries with a focus on Brazil in
terms of the counts of confirmed cases, deaths, and recoveries (see
Figure 2).

The “View” button in the “Control Panel” controls the viewing
process by providing a number of options of viewing the 7 disease-
related rates and variables. The user selects them by clicking the
checkbox to their right. Some combinations of variables are pre-
defined such as the “Default” view corresponding to just displaying
the incidence andmortality rates, while the “Rate” view corresponds
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to just displaying the incidence, mortality, and recovery rates. As
the animation proceeds, the values of the selected disease-related
variables and rates are displayed using geo-circles anchored at the
corresponding geographic location and whose radii provides an
indication of their relative magnitudes. We have several options
for the radii: linear and logarithmic, neither of which are always
satisfactory. Using a "linear" relationship breaks down when radius
values differ by more than one order of magnitude. A “logarithmic”
relationship is fine for differentiating between small radius values
while making it harder to differentiate between large radius values
as well as needing to make an appropriate choice of the base (e.g.
2 or natural logarithm instead of 10 which is not good for large
radius values). The radii can be scaled by factors ranging from .1X
to 8.0X which is useful when the radius values are very large or
very small, respectively.

In our example, Brazil is said to be the “Focus Location” which
means that as the animation proceeds, users can see additional data
for Brazil corresponding to the daily variation of of all of the disease-
related variables and rates. It is constantly updated by looking at
the panel with the heading “Animation Focus Data” to the right of
the map which shows Brazil in this case (see Figure 2).

In addition, during the animation, the mouse can be moved over
the visible part of the map (termed “hover”) and the data associated
with closest geo-circle (e.g., Peru in Figure 2) is displayed in what we
call the “Hover Box” which is initially anchored on the mouse and
moves with the mouse until three quick left clicks are performed at
which time the Hover Box” is detached and remains in that position
until the performance of the next three quick left clicks. However,
even though the hover box has been detached from the mouse,
it continues to display the data associated with the nearest geo-
circle to the mouse. This nearest geo-circle is highlighted with a
thicker outline. Figure 2 shows the result of the animation for a time
period since the first of this year which is set in the “Animation
Control” panel. Note that the “Animation Control” panel enables
users to pause, resume, halt, and restart the animation process by
clicking on the appropriate button. Users can also run the animation
in a day-by-day manner one day at a time in the forward and
backward temporal directions via the buttons labeled “<” and “>”,
respectively. It is especially interesting to go backwards at the end of
the animation by repeatedly clicking on the “<” button found to the
left of the “Start/Pause/Resume/Stop” button. The above "playback"
can be achieved in a continuous manner by using the mouse to
define the width of a window by varying the positions of the left
and right tabs of the time slider. This process proceeds by fixing
the right tab and varying the left tab as needed. The “playback”
is achieved by dragging the left tab in either of the two temporal
directions. The right tab is left alone and it follows the motion of
the the left tab.

5 EXAMPLES OF THE UTILITY OF
CORONAVIZ

in this section we provide use cases of CoronaViz that demonstrate
its utility. Notice that we provide both figures and animations. The
figures usually correspond to the last screenshot (frame) of an
animation. In most cases we also provide a link to video for the
entire animation. The animation can be viewed by clicking on the

link in the paper or by cutting the link from the paper and pasting it
in the browser (preferably the Chrome or Microsoft Edge browsers).

We first compare the dynamic visualization provided by Coron-
aViz with conventional methods as used, for example, by newspa-
pers such as the Washington Post for the incidence rates for some
of the states in the US (Figure 3) that are two-dimensional graphs
where the 𝑥 axis corresponds to the date while the 𝑦 axis corre-
sponds to the value of disease-related variables and rates, Figures 3a,
3b and 3c, show the incidence and mortality rates for the United
States during April, July, and September of 2020, respectively, They
are screenshots from the entire animation1. From these three fig-
ures we see that there are more confirmed cases in New York than
other states in April while New York reported far fewer cases in
July. Meanwhile, the number of confirmed cases grows rapidly in
the southern and western states. In September, a growing trend of
confirmed cases moves to the western and north-central states. This
data and the corresponding trends (Figure 3c) are also available on
the Washington Post website but it is difficult to draw conclusions
about the spatial significance of the relationship between the in-
cidence rates of some spatially adjacent states. Moreover, we can
visualize the data of all states on the map in CoronaViz while it is
impossible to fit 50 graphs in one page. In addition, CoronaViz can
show multiple variables/rates on the map while the graphs could
be confusing when many variables/rates are plotted as the graph
can support at most two different 𝑦-axes interpretations (i.e., one
on the left and one on the right ends of the 𝑥-axis).

It is often the case that the data values have very small magni-
tudes as is the case for mortality rates especially when compared
with the number of confirmed cases or incidence rates thereby mak-
ing it difficult to compare their values for different locations. Users
can perform more meaningful comparisons of locations with very
small data values by changing the scaling factor2. For example, Fig-
ures 4a and 4c show the mortality rate in the US for September 2020
(window mode) and for Africa in January through October 2020
(Total mode), respectively. It is very small and consequently, the
geo-circles representing the mortality rates are also small, which
makes it difficult to compare the rates of different locations. By
changing the scaling factor of the mortality rate geo-circles, their
sizes become larger simultaneously (see Figure 4b and 4d), respec-
tively. After that, the differences in the mortality rate between two
locations are clearer. Interestingly, the variation in Africa is much
bigger than in the US.

Besides using raw data directly, we often also normalize the
data based on population3. Figures 5a and 5c show the number of
confirmed cases and deaths in South America in September 2020
(window mode) and in North America in January through October
2020 (Total mode), respectively. Here we that some countries like
the U.S. and Brazil have a large population and thus they have
many confirmed cases, which results in geo-circles with large radii
when the raw data is plotted directly. After normalization, the
values of the confirmed cases are represented by the incidence rate,
which is defined as the number of confirmed cases per 100,000
population. The incidence rate is rarely greater than 3,000 and
hence the values of the radii of the geo-circles become reasonable
1https://www.youtube.com/watch?v=UcDjFLa3I_Y
2https://www.youtube.com/watch?v=VLiWoWtYHQo
3https://www.youtube.com/watch?v=cCGWQ4jaChw
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(a) U.S. cases in the Apr. window (b) U.S. cases in the Jul. window

(c) U.S. cases in the Sep. window (d) charts fromWashington Post

Figure 3: CoronaViz map vs Washington Post charts (video)

(a) U.S. mortality rate
in Sep. (normal icon size)

(b) U.S. mortality rate
in Sep. (larger icon size)

(c) Africa mortality rate
in Jan.-Oct. (normal icon size)

(d) Africa mortality rate
in Jan.-Oct. (larger icon size)

Figure 4: choose a proper scaling factor (video)
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(a) South America
raw data (Sep.)

(b) South America
normalized data (Sep.)

(c) North America
raw data (Jan.-Oct.)

(d) North America
normalized data (Jan.-Oct.)

Figure 5: normalization (video)

(a) DC and Maryland aggregate

(b) DC and Maryland separate

Figure 6: limit number of icons (video)

after normalization (see Figures 5b and 5d of (window mode) in
January through October 2020 (Total mode), which correspond to
Figures 5a and 5c, respectively.

(a) log scale (base 10)

(b) log scale (base 𝑒)

Figure 7: log scale

Users can control the number of geo-circles on the map4. In
CoronaViz, geo-circles aggregate automatically if they are close

4https://www.youtube.com/watch?v=DYHk5XmGXKA
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(a) European countries (Mar.-Apr.) (b) Northern Europe (Jan.-Oct.)

(c) counties near D.C. (Jan.-Oct.) (d) Sweden and Israel

Figure 8: case study (video)

to each other. As shown in Figure 6a, the geo-circles of Wash-
ington, D.C. and Maryland usually aggregate unless we zoom in
substantially because they are geographically close. By increasing
the number of geo-circles plotted on the map, close geo-circles (e.g.,
D.C. and Maryland in Figure 6b), and more details are shown on the
map. This makes comparisons among geographically-proximate
locations feasible.

Besides using normalization to reduce the radii of the geo-circles
of the disease-related variables, we can also reduce their values
by subjecting them to a logarithmic scale. As shown in Figure 7,
the geo-circles become smaller when we use the logarithm of the
raw values as the radius. However, this also makes the difference
between two geo-circles less noticeable. As a result, a smaller base
for the logarithm is referable. For example, a natural logarithm
(Figure 7b) is better than the base 10 common logarithm (Figure 7a).
Note also that using a small base is equivalent to using a larger
scaling factor.

We also study some typical cases to show the utility of CoronaViz.
In Europe, the pandemic first peaked in late March to early April.
As shown in Figure 8a (confirmed cases and deaths), there were
several hot spots. Setting the temporal window to be March and
April finds them to be the U.K., France, Germany, Italy, and Spain.
Another example is Sweden which let the Coronavirus spread in
the hope that the population would develop “herd immunity”. Fig-
ure 8b shows the incidence and mortality rates for Sweden and
its neighboring countries for January through October 2020 (Total
mode). From Figure 8b, we see that Sweden has higher incidence

and mortality rates than its neighboring countries. We can also
compare the data through the text information provided in the
sidebar5. In Figure 8d, we use Israel as a baseline, whose population
is close to Sweden. We observe that Israel has a higher incidence
rate but a lower mortality rate compared with Sweden. Note that
we do not have recovery data than Sweden so it is not shown in
Figure 8d. Observe that CoronaViz not only visualizes data of coun-
tries but also other administrative divisions like states and counties.
For example, some counties near Washington D.C. are plotted in
Figure 8c for January through October 2020 (Total mode)

6 CONCLUDING REMARKS AND
DIRECTIONS FOR FUTURE RESEARCH

We have seen the utility of animation to keep track of the spread
of disease by examining disease-related variables and rates. Our
visualization relies heavily on the availability of quantitative data
about the presence of the disease provided by the Johns Hopkins
University. Additional useful knowledge about the potential pro-
gression of the disease can be gained by keeping track of spatially-
referenced mentions in news articles as in NewsStand [10, 12, 17],
tweets as in TwitterStand [6, 8, 18], documents such as PubMed [13]
and ProMED-mail [9, 13], and spreadsheets [1]. This involves geo-
tagging which is the process of recognizing textual references to
location as in [14, 16]. Presently we do not make use of such data

5https://www.youtube.com/watch?v=QSkI8htZQQo
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although we do feel that such an approach is a direction for future
research.

Note that we have not provided “positivity” data which indicates
the percentage of tests that are positive (i.e., the ratio of the number
of confirmed cases and the total number of tests). The problem here
is that the number of tests is unevenly reported thereby making it
impossible to report this rate accurately. We will incorporate this
measure in CoronaViz once testing centers adopt more complete
reporting procedures that include this data. Finally, another topic
for future investigation is normalization by a country’s area.
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