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ABSTRACT
This paper envisions using user-generated data as a cheap way
to improve accuracy of epidemic tolls in underserved communi-
ties. The global widespread of COVID-19 pandemic has imposed
several unprecedented challenges. One of these challenges is con-
stantly monitoring the unprecedented epidemic widespread at a
fine-granular spatial scale, so experts can model, understand, and
prevent disease transmission and field personnel can reach and
treat infected people. Unfortunately, the limited resources com-
pared to the pandemic widespread has led to a significant number
of unreported cases in underserved communities and developing
countries, including a large number of severe cases.

We propose in this paper enhancing epidemic case reporting in
underserved communities through exploiting the power of data that
are posted by people on web. Our vision is building a data analysis
pipeline that filters and categories use-generated data objects to
provide informal estimates for tolls in unreachable regions and
enhance estimates in other regions. The pipeline consist of five
stages, that starts with filtering epidemic-specific data to visualize
advanced aggregates to end users. We also discuss several technical
challenges that face different stages of the pipeline.
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1 INTRODUCTION
The global widespread of COVID-19 pandemic has clearly intro-
duced unprecedented challenges to humanity at different fronts. In
the front line of these challenges are the health-related challenges,
including reaching out and providing appropriate medical care to
infected people. However, this pandemic has a global widespread
almost in every country, province, and village worldwide, which
makes monitoring it a tremendously difficult task. With the lim-
ited resources, the health systems have to prioritize patients for
care based on different factors [7, 14–16]. Unfortunately, the un-
derserved communities, e.g., rural areas and slums in developed
countries or small cities and villages in developing countries, are
highly impacted by the consequences of this pandemic relative
to other communities. This is because of their higher exposure to
the causes of infection and their limited access to COVID testing
and equipped medical care facilities [5, 10–12, 25]. Furthermore,
failure to monitor and report cases is a growing concern particu-
larly in developing countries because of the limited public health
infrastructure, the weak health systems, insufficient laboratory ca-
pacity of diagnostic testing, and the poor surveillance systems for
diseases [1, 18]. Therefore, the number of reported infections and
deaths in underserved communities does not reflect the actual num-
bers almost everywhere [3, 23]. This leads to a very high cost in
lives. For example, as of September 2020, more than 75% of children
who have died of COVID-19 in the U.S. are minorities, though they
account for just 41% of the overall youth population [28].

To improve access to underserved communities, we propose
to use the power of people to mitigate reporting inaccuracy. The
main idea is using user-generated data that flows on web around
the clock to extract related information that helps in improving
epidemic reporting to health officials. Such mitigation will have
a great impact as it will enable reaching currently inaccessible
cases. This helps health officials to provide appropriate medical care,
surround infection foci, and control the situation faster especially
in underserved communities that are highly impacted with limited
reporting means and highly infectious environments.

Existing work on coronavirus-related social media data puts a
particular focus on controlling spread of misinformation that are
related to the pandemic symptoms, transmission modes, and other
misleading information that could harm people’s health [2, 4, 8, 9,
13, 19, 20, 22, 24]. Although this is a crucially important problem
to address, it deals with extracting harmful information from user-
generated data to prevent the negative aspects of spreading mis-
information. On the contrary, our work deals with user-generated
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data positively as a source of important information that could
help health experts. This is also related to orthogonal efforts that
deal positively with coronavirus-related user-generated data, in-
cluding sentiment analysis [27], integrating with IoT data [26], and
modelling transmission [21].

The proposed data analysis pipeline consists of five main stages:
adaptive filtering, categorization, geotagging, aggregation, and vi-
sualization. Each of these stages has different issues related to either
lingual dependency, processing streams, or granularity. The rest
of this paper outlines each analysis stage, discussing the technical
issues and their implications.

2 DATA ANALYSIS PIPELINE
This section outlines the proposed data analysis pipeline. Figure 1
shows the proposed pipeline architecture. The pipeline consists of
five ordered stages, namely, adaptive filtering, categorization, geotag-
ging, aggregation, and visualization. The stages work in a sequential
order, where the output of each stage is an input to the following
stage. The first stage takes the input data and epidemic-specific
information, while the last stage output visualized aggregates for
epidemic cases grouped by spatial locations and temporal intervals.
The main functionalities and distinguishing characteristics of each
stage are briefly outlined below.
(1) Adaptive filtering: This stage takes two inputs: (a) A static
dataset or a dynamic data stream of user-generated objects, e.g.,
tweets, posts, comments, or fusion of them. (b) Epidemic-specific
characteristics; a set of seed keywords, optional locations of interest,
and optional times of interest. Using the two inputs, an adaptive
filter is employed to filter out any data object that does not satisfy
the epidemic characteristic. Therefore, any data object that does
not contain any of the keywords, lies outside the areas of interest,
or posted outside the times of interest will not be considered for
further processing. When neither locations nor times are provided,
all locations and times are considered relevant, e.g., all locations are
relevant for the global COVID-19 pandemic. However, this filter
should be adaptive in terms of improving the filtering keywords
while the filtration process goes on. To this end, when a relevant
data is found based on the seed keywords, the adaptive filter should
keep all other words of this data except stop words. Over time, the
filter will discover more keywords that identify epidemic-related
data adaptively, either by using frequent words or other keyword

identification methods. This adaptation should also consider the
type of input dataset, as static datasets are easier to discover new
keywords compared to dynamic data streams.
(2)Categorization: This stage takes the set of relevant data objects,
that are output of the first stage, to categorize them based on the
epidemic case statuses. For example, for COVID-19 pandemic, three
potential case categories are: a death case, a mild infection case, and
a severe infection case. Such categorization is epidemic-specific in
terms of number of categories and how to identify each category.
One way is keyword-based categorization, where each category is
defined by a set of keywords and the object is assigned based on
the corresponding keywords. This way can be performed jointly
with the adaptive filtering stage where the list of filtering keywords
are categorized into multiple categories, or separately based on
different keyword sets. Another way is using machine learning
techniques that have shown effectiveness in document classification.
Regardless the categorization method, data in each category will be
used in the aggregation stage for improving miscounting accuracy.
(3) Geotagging: Another piece of information that is needed in
data aggregation is the geographical location of each data object
to map the epidemic case to a corresponding city, district, or vil-
lage. Despite the widespread of mobile devices and mobile users of
online platforms, automatic geotagging is still a limitation where
majority of data comes either with very coarse spatial granularity
or without any spatial information. A main reason is legal privacy
concerns, where user-generated data platforms disable automatic
geotagging by default to protect personal privacy and avoid legal
problems. To overcome this limitation, this stage analyzes the data
object’s content and metadata to assign a primary relevant location.
Geotagging has been studied in the literature for different settings
and performance trade-off, including for short posts, long posts, etc.
Among the recent work is [17] that uses deep learning to geotag
tweets of any language. This type of work is the most relevant for
user-generated data of epidemic analysis due to high percentage
of short posts and popularity in different languages. This is also
related to the cross-lingual issues that will be discussed in Section 3.
(4) Aggregation: After processing over the first three stages, the
output data objects are ready to be aggregated into corresponding
locations and time intervals. This spatio-temporal aggregation stage
represents the main counting and analysis stage. Locations could
be attached from the original data source or resulted from the
geotagging stage. The object timestamp is attached from the original
data source in majority of platforms. The aggregation could be
either a simple counting aggregation grouped by location and time
for all places and times, or advanced aggregation for a specific place
or certain time intervals. We outline our vision for both below.

Simple aggregations. The simple spatio-temporal aggregation
stage sums up data objects counts based on user-defined hierarchies
for both spatial and temporal dimensions. For the spatial dimension,
end users, e.g., health officials or activists, might, for example, de-
fine a hierarchy of <city, county, state> to count different categories
of epidemic cases for each provided city, county, and state within
the USA. Users should be able to control defining this hierarchy
based on the needs and the different administrative region divisions
around the world. Also, the provided regions are not necessarily
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to be of predefined borders, but could be arbitrary, e.g., output of a
regionalization algorithm, to enable exploring areas based different
attributes, e.g., economic level, population density, or environmen-
tal factors. In all cases, the attached location information to data
objects affects the count accuracy for this user-defined spatial hier-
archy. For example, if the attached information provides city-level
locations but not district-level, any hierarchy that includes districts
will suffer form low counting accuracy. This is discussed among
the technical issues in Section 3.

Unlike the spatial dimension, the temporal dimension is more
deterministic and has clearer aggregation options, and in turn less
issues. Users can still define temporal hierarchy for aggregations.
For example, the user can define <day,week,month> hierarchy to
count cases for each day, week, and month in each city, county or
state. Unlike spatial information, attached temporal information
are provided in fine granularity, e.g., second-level granularity, in
majority of platforms. This makes temporal aggregation easier and
of much better accuracy. By default, each level of the temporal
hierarchy assumes disjoint time intervals, e.g., disjoint days, for
ease of use due to popularity of this temporal aggregation model.
However, users should be also able to define temporal hierarchies of
overlapping time intervals. For example, if the analysis is performed
on a continuous data stream, a sliding window of three days will be
of interest for health officials to monitor in different places, which
is by definition a set of overlapping time intervals. This could be
also applicable to static datasets in certain analysis scenarios. So,
allowing overlapping time intervals will be a useful aggregation
feature to support.

Advanced aggregations. Beyond the simple count aggrega-
tions for all levels of spatial and temporal hierarchies, end users
will be interested in more advanced aggregations that better show
the situation in specific places and at certain times. For example,
when Southern California appears as a region with high number
of cases on the epidemic map, health officials will be interested in
producing advanced aggregates for Southern California counties
that show the absolute and relative increase in number of cases over
the past seven days. Another example is finding areas that have the
highest rate of increase over the past three days to mitigate most
vulnerable regions. We can discuss endless examples that combine
spatial, temporal, and counts in an advanced way to show a dif-
ferent information or insight. It is important to identify the most
important blocks that are used in such advanced analysis based
on the need of domain experts, making use of existing analysis
frameworks as data analysis infrastructures.
(5) Visualization: The last stage is visualizing both simple and ad-
vanced spatio-temporal aggregates to end users, e.g., health officials
or leading community activists, to enable them making use of these
counts effectively. This stage should make use of the existing rich
literature of visualization frameworks, such as UCI Cloudberry [6],
to provide low-effort and effective visualization. Obviously, a ge-
ographical map will be an essential element in such visualization.
Domain experts should be involved in collecting requirements for
all needed visualization features, so they are effective for them as
end users. For this context, fundamental visualization elements that
should be supported are heatmaps that are either based on admin-
istrative borders or cross-borders, hover display boxes that shows

cases counts in each spatial entity, filters that allow fragmenting
the data based on location and time, and filters that allow fragment-
ing based on other important attributes such as case category, e.g.,
either death, mild infection, or severe infection of COVID-19. In ad-
dition, the traditional pan, zoom, linking, and brushing features of
interactive geovisualization should be supported to enable effective
display and exploration for both simple and advanced aggregates.

3 DISCUSSIONS
This section discusses some technical issues that should be ad-
dressed while developing the proposed data analysis pipeline. We
discuss issues of language dependency, real-time streams, granular-
ity, and multi-locatable objects.
Language dependency. One of the main challenges in supporting
underserved communities for epidemic data applications is the lan-
guage issue. Obviously, the language and its usage is highly variant
from one underserved community to another, depending on the
country and even the locality within that country. Orthogonal from
differences in languages among countries, it is known that dialects
could be very different within different parts of the same country.
This issue affects the first three stages of our pipeline, adaptive filter-
ing, categorization, and geotagging. Addressing this issue could take
one of two forms. The first way is tailoring the developed pipeline
for a certain underserved community, and hence use its specific
language and dialects as input to process. This means tailoring the
filtering and categorization keywords and using language-specific
geotagging tool, e.g., place ontology. The alternative way is train-
ing machine learning models that uses blended datasets of several
languages to adapt for a multi-lingual setting. This approach is used
in the literature for different tasks. For example, the work in [17]
uses this approach for cross-lingual geotagging.
Real-time streams. When data analysis is performed on a dy-
namic data stream that continuously receive data objects around
the clock, different aspects of data analysis change including data
storage, processing schemes, and query models. This has triggered
the whole literature of streaming data management that is active for
a couple of decades. For our proposed data analysis pipeline, analyz-
ing streaming data will have impact on all stages. The least affected
stage is geotagging as many of existing geotagging methods depend
solely on the data object’s content and metadata, without much
dependency on previous or upcoming objects. A main problem for
this stage will be geotagging efficiency in real time, however, using
fast machine learning models could solve this problem [17]. For
other stages, the impact is clearer. The filtering phase will be a
driver stage as it will help to significantly reduce the streaming
data size and output only relevant data objects, so the number of
objects to be processed by the following stages are much smaller
in size. This will eliminate one of the major overhead in stream
processing, which is excessive data size. The other major over-
head, which is incremental data processing, will clearly affect the
other three stages, categorization, aggregation, and visualization.
In categorization, incremental document classification has to be
incorporated. If keyword-based categorization is employed, incre-
mental processing will be straightforward to incorporate. Machine
learning based categorization will be more challenging to handle.
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Although several existing techniques handle this setting, the re-
sult accuracy is expected to be lower compared to static datasets.
The incremental aggregation will be easier and less impacted by
the streaming nature. The reason is that all our aggregations de-
pend on counting, which is easy to maintain incrementally. The
visualization will consume the aggregation results as is. However,
incremental results updates will need to be visualized incrementally
to end users. However, in case of epidemics, even hourly updates
are considered fast enough for most of the cases, and this can be
adequately served by existing visualization platforms.
Granularity. At different stage of the proposed pipeline, granu-
larity plays a role in trading off usability and processing overhead
of analyzing user-generated data. For example, adaptive filtering
could classify objects as relevant or irrelevant and output one type
of relevant objects. It could also filter at a finer granularity and
further classifies relevant objects into further types to distinguish
epidemic-specific cases. This is clearer in the categorization stage
that can provide coarse-granular or fine-granular categories with a
wide variety of options. Finer granularity levels will provide better
accuracy and more information, but it will come with further pro-
cessing requirements. Granularity is also a trade off for geotagging,
where accurate point geotagging consumes much larger processing
overhead, while city-level or province-level geotagging is much
faster. The granularity of aggregation over space and time will also
introduce the same trade off, but it will add a storage trade off as
well to decide how much data to store. In general, granularity is a
cross-stage issue to consider while designing and developing the
proposed pipeline, and it should consider the trade off between
available computing resources and required functionality.
Multi-locatable objects. Some data objects might be attachable
to multiple locations. Examples for sources of such phenomenon
are location ambiguity, e.g., Alexandria is a city name in different
countries, mentioning multiple locations either within the content
or in both content and metadata, e.g., the user profile shows a
city in USA and the post is about a city in India. Regardless the
source of multiple locations, this represents a challenge as we can-
not assume the case is replicated in multiple physical places unless
the locations are nested, e.g., California and USA. However, for
the general case where the attachable locations are different, it is
essential to promote one of them as the primary location to be
used in further analysis. Location selection could be rule-based
or certainty-based. Rule-based location selection will apply some
heuristic rules to promote the most probable location, e.g., favoring
the content words over the user profile location or favoring the
earliest mentioned location. Certainty-based location selection will
depend on assigning a probability to each potential location, ei-
ther based on a probabilistic model or a multi-class classifier. Then,
locations can be considered or neglected based on these probabilis-
tic values. This certainty-based model opens the door to consider
more than one location in the aggregation by introducing uncertain
query processing. However, we believe that might be confusing for
non-expert end users. Another option is to consider all uncertain
locations to contribute partially while distinguishing them from
certain locations in both aggregation and visualization stages.
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