
Sensitivity Analysis for COVID-19 Epidemiological Models
within a Geographic Framework

Zhongying Wang
zhongyin@usc.edu

University of Southern California
Los Angeles, California

Orhun Aydin
oaydin@usc.edu

University of Southern California
Los Angeles, California

Abstract
Spatial sciences and geography have been integral to the model-

ing of and communicating information pertaining to the COVID-19
pandemic. Epidemiological models are being used within a geo-
graphic context to map the spread of the novel SARS-CoV-2 virus
and to make decisions regarding state-wide interventions and allo-
cating hospital resources. Data required for epidemiological models
are often incomplete, biased, and available for a spatial unit more
extensive than the one needed for decision-making. In this paper,
we present results on a global sensitivity analysis of epidemiologi-
cal model parameters on an important design variable, time to peak
number of cases, within a geographic context. We design experi-
ments for quantifying the impact of uncertainty of epidemiological
model parameters on distribution of peak times for the state of Cal-
ifornia. We conduct our analysis at the county-level and perform
a non-parametric, global sensitivity analysis to quantify interplay
between the uncertainty of epidemiological parameters and design
variables.
CCS Concepts
• Information systems→ Geographic information systems.
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1 Introduction
COVID-19 is a severe acute respiratory syndrome (SARS) caused

by the SARS-CoV-2 virus [7]. On March 11, 2020, COVID-19 is
declared to be a pandemic with 12,552,795 infected persons and
561,617 deaths globally as of July 12, 2020 [12]. In the United States,
the number of total cases is at 4,974,959 with 161,284 deaths [12],
making the COVID-19 pandemic a national problem.

Spatial analysis has played an essential role during the COVID-19
crisis in terms of spatial analysis of transmission and the number of
new cases [2, 6, 11, 13, 20, 21], and mapping susceptible populations
[10]. The SARS-CoV-2 is contracted from person-to-person via
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respiratory droplets [18], making public places where people are in
close contact likely places for high transmission rates [2, 6].

Epidemiological models are used within a geographic context
to map the spread of the novel SARS-CoV-2 virus and to make
decisions regarding state-wide interventions and allocating hos-
pital resources [13]. Data required for epidemiological models are
often incomplete, and biased, making uncertainty quantification a
necessity for decision-making. The spatial resolution of currently
available curated data for United States COVID-19 case and death
statistics is at the county-level. Thus, it is important to understand
the impact of epidemiological model parameters on actionable vari-
ables within a geographic setting.

In this research paper, a sensitivity analysis on decision vari-
ables is conducted, and implications of parameter uncertainty on
decision variables used by public health officials are showcased for
California. We use the Sobol sensitivity [17] to model the impact of
epidemiological variables on the spatial and space-time patterns of
new COVID-19 hospitalizations at the county level in the state of
California. We use the CHIME model (COVID-19 Hospital Impact
Model for Epidemics) [5] from University of Pennsylvania to define
COVID-19 hospitalization projections. The spatiotemporal series
for predicted new COVID-19 hospitalizations is summarized tem-
porally and spatially with time to peak demand, and the Moran’s I
statistic, respectively. The impact of epidemiological parameters of
the CHIME model on the space-time patterns of modeled hospital
demand are quantified with the Sobol sensitivity.
2 Data & Methodology
2.1 Data

CHIMEmodel requires several parameters, including population,
the number of currently hospitalized COVID-19 patients, doubling
time, social distancing effect, infectious days, and optional including
hospital resource parameters (number of beds, intensive care units
(ICUs) and ventilators) to forecast future COVID-19 hospitalizations
and its impact on the hospital resources.

The population data used in the model is from ESRI’s 2019 Up-
dated Demographics 1. This data updates annually based on sev-
eral sources of data, including a full-time series of intercensal and
vintage-based county estimates from the US Census Bureau and
a time series of county-to-county migration data from the Inter-
nal Revenue Service. Projections are necessarily derived from cur-
rent events and past trends, which is calculated from previous
census counts provided by the American Community Survey (ACS).
COVID-19 related data, including incidence, confirmed cases and
death are all from JHU CSSE COVID-19 Data 2[4].

1https://doc.arcgis.com/en/esri-demographics/reference/methodologies.htm
2https://coronavirus.jhu.edu/
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2.2 The CHIME Model
Predictive Healthcare at Penn Medicine initiated the tool Hos-

pital impact model to assist hospitals and public health officials
with capacity planning, including daily increase, peak hospitalized
census, ICU admissions, number of patients requiring ventilators
and timeline prediction.

CHIME model is one of many customized models based on SIR
(Susceptible, Infected, Recovered) model [1], which is a commonly
used epidemiological model to forecast the number of infected peo-
ple from a disease in a closed population over time. The main idea of
this model is dividing the population into compartments through-
out the progression of the disease, such as susceptible, infected
and recovered population. The model dynamics are defined by the
following equations:

𝑆𝑡+1 = 𝑆𝑡 − 𝛽𝑆𝑡 𝐼𝑡 (1)

𝐼𝑡+1 = 𝐼𝑡 + 𝛽𝑆𝑡 𝐼𝑡 − 𝛾𝐼𝑡 (2)

𝑅𝑡+1 = 𝑅𝑡 + 𝛾𝐼𝑡 (3)

where 𝛽 represents the effective contact rate, which can be com-
puted as the transmissibility 𝜏 multiplied the average number of
people exposed 𝑐: 𝛽 = 𝜏 × 𝑐 . The transmissibility is the basic prop-
erty related to the virulence of the pathogen, but the number of
people exposed is the parameter can be changed by policies, like
social distancing or mask wearing. 𝛾 is the inverse of the mean
recovery time, and recovery time indicates the period of infection
getting cleared and varies for the severity of the symptoms. For
COVID-19, the average is normally considered as 1/14. The basic
reproduction number (𝑅0) is an indicator of the contagiousness or
transmissibility of infectious and parasitic agents and represents
average number of people can be infected by any given infected
person without immunity from past exposures or vaccination [3].
It is defined as 𝑅0 = 𝛽/𝛾 . The disease is supposed to spread if 𝑅0 is
> 1 and the larger the number is, the faster it will spread. Since the
transmissibility and social contact rates are hard to compute, this
parameter can be replaced by doubling times. Since the rate of new
infections in the SIR model 𝑔 can be computed with doubling time
𝑇𝑑 : 𝑔 = 𝛽𝑆 − 𝛾 , 𝛽 can be computed with the initial population size
of susceptible individuals as 𝛽 = (𝑔 + 𝛾).

ESRI has developed a toolbox for the CHIME model and parame-
ters used in sensitivity analysis and their explanations are shown
in Table 1.
2.3 Sobol Sensitivity

Sobol sensitivity analysis quantifies the impact of total-effect
indices and higher-order interactions and has no limit for the prepa-
ration of the input sample, and such characters enable it to deal
with auto-correlated spatial input [8].

The Sobol method is one of the variance-based methods, which
can compute sensitivity indices regardless of the linearity or mono-
tonicity, or other assumptions on the underlying model. In variance
based method, the fractional contribution of each input to the vari-
ance V of the model is estimated and the total variance 𝑉 of the
model output is decomposed to calculate the sensitivity indices for
every independent 𝑋𝑖 .

𝑉 =
∑
𝑖

𝑉𝑖 +
∑
𝑖< 𝑗

𝑉𝑖 𝑗 +
∑

𝑖< 𝑗<𝑚

𝑉𝑖 𝑗𝑚 + · · · +𝑉12...𝑘 (4)

where 𝑉𝑖 is the share of the output variance explained by the
𝑖th model input, and indicates the sensitivity of 𝑌 to 𝑋𝑖 . 𝑉𝑖 𝑗 is the
share of the output variance explained by the interaction of the
𝑖th and 𝑗th model inputs, and indicates the sensitivity of 𝑌 to the
interaction of 𝑋𝑖 and 𝑋 𝑗 . 𝑘 is the total number of the model inputs.

The first-order sensitivity computes the contribution to the out-
put variance of the main effect of𝑋𝑖 and is defined with conditional
variances as

𝑍𝑖 =
𝑉𝑖

𝑉
=
𝑉𝑎𝑟 [𝐸 (𝑌 |𝑋𝑖 )]

𝑉𝑎𝑟 (𝑌 ) (5)

where the inner expectation of the numerator is conditional on
𝑋𝑖 taking a value 𝑋𝑖∗ within its range of uncertainty, while the
outer variance is calculated over all possible values of 𝑋𝑖 . If the
variance of the conditional expectation 𝐸 (𝑌 |𝑋𝑖 = 𝑥𝑖∗) for some
particular value 𝑋𝑖 = 𝑥𝑖∗ is relatively large when compared to the
total variance, and all the effects of the 𝑋 𝑗 , 𝑗 ≠ 𝑖 , then factor 𝑋𝑖 can
be considered as an influential one. Similarly, 𝑍𝑖 𝑗 =

𝑉𝑖 𝑗
𝑉

indicates
the sensitivity indices of the interaction effect of 𝑋𝑖 and 𝑋 𝑗 [17].

According to
∑𝑘
𝑖=1 𝑍𝑖 +

∑𝑘
𝑖=1 𝑍𝑖 𝑗 + · · · + ∑𝑘

𝑖=1 𝑍𝑖 𝑗 · · ·𝑘 = 1, total-
order index 𝑍𝑇𝑖 , which measures the contribution to the output
variance of 𝑋𝑖 including all variance caused by its interactions, of
any order, with any other input variables can be defined as

𝑍𝑇𝑖 = 1 − 𝑉−𝑖
𝑉

= 1 − 𝑉𝑎𝑟 [𝐸 (𝑌 |𝑋−𝑖 )]
𝑉𝑎𝑟 (𝑌 ) (6)

Sobol sensitivity quantifies the contribution of variance from
a set of explanatory variables on the variation of target variable
of interest. Thus, it provides a statistical framework within which
the impact of a model parameters can be assessed marginally and
jointly.
2.4 Experimental Design

The method of Sobol sensitivity analysis computes the indices by
using the decomposition of the output variance in Eq.1. Capturing
representative variance requires rigorous design of experiments.
In this work, experiments are designed using the Saltelli sampling
scheme [15]. Steps of defining experiments are elaborated below:

(1) Choose an integer N as the size of the base sample.
(2) Generate a sample matrix (𝑁, 2𝑘) of the input factors by

using the Saltelli sampler, where 𝑘 is the number of input
factors. Divide the matrix into two and define each part as
𝐴 and 𝐵, which contain half of the sample data.

(3) Duplicate the matrix 𝐴 and replace the 𝑖-th column with the
same column from matrix B, then define it as 𝐷𝑖 . The matrix
𝐶𝑖 is the duplicate of matrix 𝐵, except that the 𝑖 − 𝑡ℎ column
is replaced with the 𝑖 − 𝑡ℎ column in matrix A.

(4) Compute the model output for all the input values in the
sample matrices and then use the Eq.5 and 6 to compute the
sensitivity indices.

Sampling scheme above defines experiments to model variance
of response variables without increasing the computational load
by employing full factorial design.
2.5 Spatiotemporal Sensitivity Analysis

The output response for every experiment is a spatiotemporal
series of CHIMEmodel output.We summarize the predicted number
of hospitalizations time series at every county with time to peak
hospitalizations.
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Table 1: Parameters in the CHIME model

Parameter Explanation

Doubling Time in Days The number of days that the number of infected individuals to double without interventions.
Social Distancing The quantitative estimation of social contact reduction in each catchment area.
Infectious Days The number of days an infected person has the ability to infect others.

Hospitalization Rate The percentage of all infected cases that will need hospitalization.
Average Days of Hospital Stay The average number of days COVID-19 patients have needed to stay in a hospital.

ICU Rate The percentage of all infected cases which will need to be treated in an ICU.
Average Days in ICU The average number of days COVID-19 patients have needed ICU care.

Ventilated Rate The percentage of all infected cases that need mechanical ventilation.
Average Days on Ventilator The average number of days with ventilation needed for COVID-19 patients.

𝑡
(𝑖)
𝑝𝑒𝑎𝑘

= max
1≤𝑡 ≤𝑡𝑚𝑎𝑥

𝐻
(𝑖)
𝑛𝑒𝑤 (7)

In Eq. 7, the time to peak hospitalizations at location 𝑖 , 𝑡 (𝑖)
𝑝𝑒𝑎𝑘

, is

the time at which the number of predicted hospitalizations 𝐻 (𝑖)
𝑛𝑒𝑤

reaches its maximum value. In cases where projections decline,
𝑡
(𝑖)
𝑝𝑒𝑎𝑘

is assumed to be 0. 𝑡 (𝑖)
𝑝𝑒𝑎𝑘

reduces the time series into a spatial
distribution of time to peak hospitalizations, denoted as 𝑇𝑝𝑒𝑎𝑘 =

𝑡
(1)
𝑝𝑒𝑎𝑘

, 𝑡
(2)
𝑝𝑒𝑎𝑘

, ..., 𝑡
(𝑁 )
𝑝𝑒𝑎𝑘

.
The spatial distribution of time to peak hospitalizations are sum-

marized using the Moran’s I statistic, that quantifies the spatial
patterns of time to peak hospitalizations.

𝐼 =
𝑁
∑𝑛
𝑖=1

∑𝑛
𝑗=1𝑤𝑖, 𝑗 (𝑡 (𝑖)𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 ) (𝑡
( 𝑗)
𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 )

𝑊
∑𝑛
𝑖=1 (𝑡

(𝑖)
𝑝𝑒𝑎𝑘

−𝑇𝑝𝑒𝑎𝑘 )2
(8)

In Eq. 8, w is the geographic weight, and𝑊 is the sum of all
weights,𝑊 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1𝑤𝑖, 𝑗 . A positive and statistically signifi-

cant 𝐼 indicates spatial clustering, and a significant and negative 𝐼
indicates dispersion of 𝑡 (𝑖)

𝑝𝑒𝑎𝑘
.

3 Results
The decision variable we investigate is the spatial clustering of

time until the peak number of cases, 𝑇𝑝𝑒𝑎𝑘 , are observed at a given
county.A short time to peak indicates that the hospitals in that
county are about to receive a high number of COVID-19 patients.
Spatial clustering of𝑇𝑝𝑒𝑎𝑘 indicates that similar volumes in hospital
demand will exist at neighboring counties.

We conducted 800 simulations by varying three model param-
eters. Our choice behind these parameters are due to high uncer-
tainty associated with them. According to epidemiology analysis,
the (𝑅0) ranges from about 2 to 6 based on initial estimates of the
early dynamics of the outbreak inWuhan, China [14]. The doubling
time is computed with this uncertainty range. According to CDC
and other researches, 88% and 95% of specimens no longer yielded
replication-competent virus after 10 and 15 days, but recovery of
replication-competent virus between 10 and 20 days after symptom
onset has been documented in some persons with severe symptoms
[19]. The uncertainty of infectious days is then chosen from 10 to
20. Experiment parameters and their ranges are presented in Table
2.

Table 2: Epidemiological Experiment Variables

Epidemiological Experiment Variables

Doubling Time in Days [2.27,10.05]
Social Distancing (%) [0,50]

Infectious Days [10,20]

We present the response surface for the average number of days
to peak in the state of California with respect to uncertain model
parameters. The response surface is depicted in Figure 1.

Figure 1: Surface Plot of Sensitivity Analysis
In some of our simulations, the peak is not observed within our

simulation time span (180 days). These simulations correspond
to peaks in the response surface. Our results indicate that for in-
creasing doubling time and social distancing, the peak is delayed.
Response surfaces with respect to infectious days indicate a more
complex relationship that points to a high amount interaction be-
tween infectious days and other epidemiological variables.

Figure 2: Tornado Plot for Sobol Sensitivity
Sensitivity of spatial patterns of 𝑇𝑝𝑒𝑎𝑘 is showcased in Figure 2.

Doubling time is the most first-order sensitive variable, followed
by social distancing and infectious days. The variables are ranked
with respect to their first-order sensitivity. Note that all three model
variables have high total sensitivity. This indicates strong interac-
tions between these variables and the spatial patterns of hospital
demand.
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Next, we depict spatial patterns of 𝑇𝑝𝑒𝑎𝑘 with four extreme real-
izations from our set of 800 simulations. The spatial distribution of
𝑇𝑝𝑒𝑎𝑘 for different cases are shown in Figure 2:

Figure 3: Time toPeakCases forDifferentModel Parameters.
Basemap courtesy of Esri and its partners

Figure 3 elaborates the importance of epidemiological model
parameters on the spatial patterns of potential hospital surges. For
short doubling times (fast transmission) and low social distancing,
we observe significantly high peaks that occur within a week of
our simulation start time in most of North California. Zero days
to peak implies that a significant peak in cases is not observed. In
our simulations, these locations with zero time to peak also have
low number of new hospitalizations. Thus, for high doubling time
and high levels of social distancing (top-left) no significant surges
are observed. Figure 3 motivates the importance of incorporating
uncertainty pertinent to epidemiological parameters for decision
making.
4 Discussions

For the experimental design, asymptomatic and pre-symptomatic
patients should be considered to improve the accuracy of the model.
𝑆𝐴𝑅𝐼𝐼𝑞𝑆𝑞 model is developed based on SIR model, which takes as-
ymptotic or mildly symptomatic, isolated infected and quarantined
susceptible individuals into consideration[16]. As the proportion of
COVID-19 transmission due to asymptomatic or pre-symptomatic
infection compared to symptomatic infection is unclear, further
study on virology need to be conducted [9].
5 Conclusions

Geographical sensitivity analysis shows complex interactions be-
tween uncertain epidemiological parameters and spatial patterns of
COVID-19 incidence. In particular, doubling time and social distanc-
ing are shown to have a considerable impact on the spatial patterns
of surges in the number of hospitalizations. Experimental design
and associated simulations of time to peak hospitalization depicts
the impact of uncertainty on decision variables. Sobol sensitivity
analysis reveals high order interactions between model parame-
ters, quantified by high total order sensitivity terms for all model

parameters. Study showcases the importance of accurate under-
standing of COVID-19 drivers for spatial planning as drastic ranges
for hospital surge times are observed in different simulations. Our
results indicate that overall peak for new hospitalizations show
spatial clustering, meaning nearby counties are likely to experi-
ence hospital surges at similar times. This points to the importance
of resource planning ahead of time as our simulations show that
directing patients during a surge to nearby counties may not be
possible.
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