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ABSTRACT
Awide range of approaches have been applied to manage the spread
of global pandemic events such as COVID-19, which have met with
varying degrees of success. Given the large-scale social and eco-
nomic impact coupled with the increasing time span of the pan-
demic, it is important to not only manage the spread of the disease
but also put extra efforts on measures that expedite resumption
of social and economic life. It is therefore important to identify
situations that carry high risk, and act early whenever such situa-
tions are identified. While a large number of mobile applications
have been developed, they are aimed at obtaining information that
can be used for contact tracing, but not at estimating the risk of
social situations. In this paper, we introduce an infection risk score
that provides an estimate of the infection risk arising from human
contacts. Using a real-world human contact dataset, we show that
the proposed risk score can provide a realistic estimate of the level
of risk in the population. We also describe how the proposed in-
fection risk score can be implemented on smartphones. Finally, we
identify representative use cases that can leverage the risk score to
minimize infection propagation.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous andmobile computing;Mobile computing; •Networks
→ Peer-to-peer protocols.
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1 INTRODUCTION
21st century has already been witness to multiple pandemics in
the first two decades, with the biggest being COVID-19 caused by
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the SARS-CoV-2 virus. The unprecedented spread of the COVID-19
has led to global efforts by governments to contain the pandemic
and to limit the impact of the virus on human society. As with
any other infectious disease, the efforts to contain the virus largely
focus on (i) minimizing human-to-human contact by enforcing
people to maintain a certain distance with others (also known as
social distancing), (ii) minimizing economic activity (also known
as lockdown) for a certain period in geographical regions, such
as cities, states or even entire countries, and (iii) by performing
contact tracing, which involves tracking the disease spread by
identifying the contacts of the confirmed cases. However, these
efforts have been met with varying degrees of success, and the
authorities have been trying to use technology as much as possible
to elevate their efforts [13].

With the rise of the Internet of Things (IoT) andmobile health [33]
(also referred to asmHealth), there has been a growth in the number
of possibilities related to not only understanding the environment
but also detecting diseases early.With regards to the COVID-19 pan-
demic in particular, governments around the world have looked to
leverage the use of smartphone applications for limiting the spread
of the disease, given the ubiquity of smartphone usage. While many
of these applications focus on providing up-to-date information
about the spread of the disease, other applications aim to notify
users in real-time when they come in contact with an infected
person [11]. These infection tracking applications use a variety of
sensors embedded in a smartphone to help detect the transmission
in real-time. A common type of sensor used is Bluetooth Low En-
ergy (BLE), which can be used for proximity detection. Multiple
applications that leverage BLE for the purpose of monitoring the
growth of the COVID-19 pandemic have been introduced in vari-
ous countries. In India, the Aarogya-Setu Application [20] informs
how many infected people are within a certain distance of a per-
son using the application by matching with national database of
the infected people. In Australia, the COVIDSafe application [2]
provide notifications to the users if their contact is detected with
a confirmed infected person. Similar applications have been de-
veloped by the governments of many other countries. Further, a
collaboration between Apple Inc. and Google has led to the devel-
opment of an Exposure API that enables developers to build various
applications using which application users can know if they came
into contact with other infected people [6]. Apart from smartphone
applications, other types of technologies are also used to help in the
cause of containing pandemic. These include the use of SwipeSense
technology to track use of medical equipment and to track whether
hospital staff wash their hands regularly1.

1https://www.cnbc.com/2020/08/02/hospitals-tracking-covid-19-with-badge-sensors-
swipesense-technology.html
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Despite the technological innovations and advancements, the
use of applications, such as those described above, and technolo-
gies for managing and controlling the spread of the infection is
challenging due to multiple reasons. Firstly, a person carrying the
disease may not show any symptoms for a long period (e.g. when
the infection is in the incubation period). As a result, any close
contacts with other people would not be detected as being risky by
infection tracking applications, and hence would not help in con-
taining the spread of the infection. Indeed, in the case of COVID-19,
a significant fraction of cases have been identified as asymptomatic
for the entire duration of infection [8]. These also contribute to
community spread of the disease, which can lead to exponential
growth in the number of infections. Secondly, once someone is con-
firmed as infected, he/she is typically isolated and is not allowed to
get involved in any social activities until fully recovered. Thirdly,
existing methods for managing infection spread are primarily reac-
tive. Counter-measures are often taken after a person is confirmed
to be infectious. Subsequently, authorities proceed with counter
measures such as lockdown of the specific geographical region.
Thus, currently, the scope for detection of the infection spread and
its management is limited. Therefore, there is a need for an early
estimate of the potential risk in a geographical region to enable
authorities to act quickly.

For risk estimation to be effective, it needs to identify people
who have greater exposure to the infection, quarantine the exposed
people, identify regions with potentially high exposures, and de-
clare a region as hot-spot even before the outbreak happens in that
region. Additionally, the risk estimation measure should also be
able to identify situations which are likely to lead to transmissions
even when there are not any confirmed presence of the known
infections. Finally, any such risk estimation needs to be adaptable
to a wide range of technology platforms. While a notion of risk
score has been introduced as part of the Exposure API by Apple
Inc and Google, its main drawbacks is that it only provides a risk
measure based on confirmed exposures to infections.

In this paper, we present a risk score that can be used to assess
the risk for individuals based on contact events identified using
smartphones. A key novelty of the proposed risk score is that it
estimates the risk propagation, unlike existing literature that only
assess immediate risk. The proposed risk score can be used to assess
the level of risk within geographical regions, enabling authorities
to act early to contain a potential outbreak. Further, monitoring the
risk score can also help individuals take actions.

In particular, the key contributions of this paper are as follows:

• Infection risk score: We introduce a risk score that esti-
mates infection propagation by monitoring contact events
among individuals.The risk score takes into consideration
factors such as the contact proximity, transmission likelihood
and vulnerability to a disease.

• Evaluation using realistic dataset: We evaluate the infec-
tion risk score using a real-world human contact dataset that
has previously been using to study infection propagation.
Our results show that potentially risky situations are well
captured using the infection risk score.

• Adaption of risk score using smartphones: We provide
detailed description on how smartphones can be used to
implement the infection risk score to track infections.

Finally, we also discuss how the accuracy of infection risk score
can be improved by incorporating contextual information, and also
present a discussion on potential use cases of the risk score for
managing infection spread.

The rest of the paper is organised as follows. Section 2 provides
detailed survey of related techniques and existing metrics used
to quantify risk and exposure. Section 3 provides details of the
proposed risk model. In Section 4 we evaluated the model using
real data. Section 5 provides the details on the propose version of
the smartphone application. This is followed by perspective uses
of the risk score in section 6. We finally conclude in Section 7.

2 RELATEDWORK
Recent studies focusing on containing pandemic can be mainly
classified into three broad groups: survey based studies, IoT based
studies and epidemic model based studies.

In survey based studies, in [19], authors report that factors such
as contact with infected person, work overload, medical history of
the person, and if the person wore Personal Protective Equipment
(PPE) or not play an important role in determining the risk of
infection transmission of COVID-19. Similarly, to identify potential
exposure, WHO uses risk assessment forms to determine the risk
of exposure. Here they ask questions related to if the person wore
the PPE as recommended or not [34].

In IoT based studies, there is increased focus on smartphone
based infection detection. Many applications and IoT Devices are
available that perform contact tracing using proximity checks. A
survey of some of these application is present in [11]. We do not sur-
vey these applications again and instead present, in brief, new appli-
cations and devices that have come-up since the publication of [11].
Recent applications and devices includes EasyBand, a wearable de-
vice that vibrates when amarked (infected) Easyband comes in close
proximity [27]. Nonetheless, it has issues related to centralized con-
trol and communication. In [12], authors used magnetometer based
proximity detection, while in [22] authors used multiple sensors to
improve the distance estimation accuracy. Such techniques fail in
the case when a smartphone lacks certain required sensor. Further,
these applications achieve privacy by architecture and not privacy
by design. Many recent application and IoT devices claim to follow
privacy guidelines such as those mentioned in [27]. These appli-
cations and devices include: (i) Pan European Privacy-Preserving
Proximity Tracing (PEPP-Pt)2 that uses anonymized ID for com-
munication, (ii) TraceSecure that uses secret sharing technique to
identify proximity [4], and (iii) proximity-based privacy-preserving
contact tracing (P3CT) that uses ambient signature protocol [21].
Again, while these applications are privacy preserving, they achieve
privacy by architecture. In summary, these studies model risk using
factors such as distance [4, 12, 20, 22, 27] and duration [6]. These
works mainly use either BLE or magnetometer to estimate distance
from neighbor. Nonetheless, these works do not quantify the risk,
and instead, just provide an estimate of whether a person was in
contact with some other person or not.
2https://www.pepp-pt.org
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On the other hand, from epidemic modeling point of view, there
are many studies that quantify risk using different parameters such
as: size of cough droplets, rate of cough, volume of particles gener-
ated, concentration of pathogens, max distance covered by pathogen
in air, pathogen particles lost due to temperature and humidity, time
an infected person stayed at a given location, duration of contact
with susceptible person, and his pulmonary rate [26]. Most of these
factors, until now, cannot be estimated using smartphone. Instead,
disease specific average values for these factors can be used as
constants while modeling risk score. In [26], authors estimated risk
as an aggregation of risk score for both when a person comes in
direct contact with other person and when a person gets infected
indirectly (a case of community spreading).

3 INFECTION RISK SCORE
In this section, we present the infection risk score that quantifies risk
of catching an infection. Our score considers exposure to pathogen
and context in a social network setting. For convenience, infection
risk score is referred by the term risk score in the remainder of the
paper.

3.1 Network model: Modeling the population
as a temporal network

For any geographical area, we consider the population to be rep-
resented by a temporal graph 𝐺 such that 𝐺 (𝑉𝑡 , 𝐸𝑡 ) is a temporal
snapshot at time 𝑡 that is created by individuals in a given area
𝐴𝑎 . For the purpose of this paper, we consider that the risk score
computation for individuals is done using mobile apps, and hence,
each individual is represented using smartphones. Here 𝑉𝑡 is the
set of smartphones communicating and active at time 𝑡 and 𝐸𝑡 is
the set of edges that exists between smartphones in 𝑉𝑡 . Let Δ𝑡 be
the time difference between two consecutive temporal snapshots
of 𝐺 . For our model we assume that if two people are in contact,
for say 10 epochs, then the edge between them is persistent over
10
Δ𝑡 snapshots of the graphs. Each person 𝑖 ∈ 𝑉𝑡 has a location, 𝑙𝑡 ,
marked by latitude and longitude pair such that 𝑙𝑡 = (𝑙𝑎𝑖,𝑡 , 𝑙𝑜𝑖,𝑡 ).
Given the interactions, at time 𝑡 , each person 𝑖 has a neighborhood,
𝑁𝑖,𝑡 where each person 𝑗 ∈ 𝑁𝑖,𝑡 has an edge (in 𝐸𝑡 ) to the person 𝑖
and is 𝑑𝑖, 𝑗,𝑡 distance apart. Here 𝑑𝑖, 𝑗,𝑡 < 𝜃𝑑 i.e., 𝑖 and 𝑗 are within
communication range and at maximum 𝜃𝑑 distance apart.

3.2 Risk score parameters
In this section, we identify the key factors that impact infection
propagation.

(1) Exposure caused by a neighbor: Communicable diseases
such as COVID-19 generally spread when a person 𝑖 ∈ 𝑉𝑡
comes in close proximity with a infected person (person 𝑗 )
or touches the surface that infected person has touched [26].
In such a case, the person 𝑖 is exposed to pathogens from the
infected person, which can lead to infection spread. The expo-
sure to a neighboring individual is a key factor determining
the likelihood of a transmission event from a neighbor, and
we term this as the neighbor exposure. For the scope of the
current paper, we limit our discussion to the the exposure
caused when an infected person come in close proximity,

although this may easily be extended to include other modes
of propagation.
To determine how the neighbor exposure impacts the spread
of infection, we consider that an infected neighbor 𝑗 exhales
𝑛𝑖, 𝑗,𝑡 ∈ R+ pathogens and these pathogens are homoge-
neously distributed within the permissible 𝜃𝑑 distance. Fur-
ther, we consider the following assumptions: (i) there is no
loss in pathogens, (ii) each time same number of pathogens
are exhaled, and (iii) between two consecutive temporal
snapshots of the graph (i.e., 𝐺 (𝑉𝑡 , 𝐸𝑡 ) and 𝐺 (𝑉𝑡−Δ𝑡 , 𝐸𝑡−Δ𝑡 )),
a person 𝑖 stays in contact with person 𝑗 for the Δ𝑡 time. In
such a scenario, the exposure to an infectious disease of the
person 𝑖 at time 𝑡 with respect to a particular neighbor 𝑗 is
given by 𝐸𝑖, 𝑗,𝑡 = Δ𝑡 × 𝑛𝑖, 𝑗,𝑡 .
In ideal conditions, if a neighbor 𝑗 is not infected, i.e., he/she
does not cough, and wears proper protective gears such
as face mask or face shields, 𝐸𝑖, 𝑗,𝑡 = 0 because there are
no pathogens exhaled by 𝑗 . In such a case, the whole idea
of maintaining social distancing even when people are not
infected would fail and susceptible people would be deemed
harmless. On the other hand, if some neighbor is infected and
coughing badly, 𝐸𝑖, 𝑗,𝑡 >> 0. In this case, other people would
ideally limit from meeting the infected person. In such a
situation also, barring the infected person, other susceptible
people would continue their physical social activities. Let
𝑟 𝑗,𝑡−Δ𝑡 be the risk score of the neighbor at time 𝑡 − Δ𝑡 . To
account for above mentioned aspects and ensure that social
distancing is enforced between susceptible people also, we
add the previous instance risk score of the neighbor to the
exposure caused due to the neighbor, i.e., 𝐸𝑖, 𝑗,𝑡 = Δ𝑡 ×𝑛𝑖, 𝑗,𝑡 +
𝑟 𝑗,𝑡−Δ𝑡 .

(2) Neighbor weight: We define the neighbor weight as the
likelihood that an individual in the vicinity is infectious.
Since we aim to estimate the risk even in situations where
confirmed infections are not known, the neighbor weight
can be estimated based on multiple contextual parameters.
For instance, in the case of communicable diseases such as
COVID-19, if a neighbor is from a hot-spot area or has a
history of the disease then the risk of getting infection from
the neighbor is high because the neighbor is coming from a
containment zone. Further, impact of diseases like COVID-19
is high on people who have a weak immunity either due to
age or have chronic diseases like kidney failure and diabetes.
On top, if a person is staying indoor, with a poor ventila-
tion chances of spreading the disease and getting infected
increases manyfold [28, 32]. In [28], authors recommend that
proper ventilation indoor can reduce infections up-to 60%.
Nonetheless, for COVID-19, different countries have differ-
ent statistics, for example, India having relatively younger
population, middle age people are more infected while more
older people have died. Let 𝑤 𝑗,𝑡 be the weight such that
𝑤 𝑗,𝑡 ∈ [0, 1] that identifies such contextual information of
the neighbor. Summed over all the neighbors of the person 𝑖
at time 𝑡 , the total exposure of 𝑖 from its neighbors 𝑗 ∈ 𝑁𝑖,𝑡 is
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thus given by equation 1.

𝐸𝑖,𝑡 =
∑
𝑗 ∈𝑁𝑖,𝑡

𝑤 𝑗,𝑡 × (𝐸𝑖, 𝑗,𝑡 + 𝑟 𝑗,𝑡−Δ𝑡 ) (1)

3.3 Risk score formulation
In addition to the neighbor weight and exposure, we define vul-
nerability as the likelihood that an individual exposed to risky
situations continues to be at risk. At any time 𝑡 the risk score of
an individual 𝑖 is the dependent on the risk score at 𝑡 − Δ𝑡 , his
vulnerability, and the exposure from the neighbors at 𝑡 . The total
risk, thus, is given by equation 2.

𝑟𝑖,𝑡 =
𝑣𝑖,𝑡 × 𝑟𝑖,𝑡−Δ𝑡 +

∑
𝑗 ∈𝑁𝑖,𝑡

𝑤 𝑗,𝑡 × (𝐸𝑖, 𝑗,𝑡 + 𝑟 𝑗,𝑡−Δ𝑡 )
1 +∑

𝑗 ∈𝑁𝑖,𝑡
𝑤 𝑗,𝑡

(2)

Here the denominator is the normalization factor. A disease
usually has a period between when the person 𝑖 gets infected from
the disease and time when he becomes an active spreader of the
disease. For example, for COVID-19, the median incubation period
is around 5 to 6 days3. In our scenario, even if a person comes in
contact with a person for whom the disease is still in incubation
period, the risk exposure is equally high as compared to meeting a
person who is an active spreader. Thus, our model does not consider
the incubation period.

From the equation (2), the value of 𝑟𝑖,𝑡 ∈ R+. If the person
is taken into isolation (i.e., no interaction with neighbors) after
getting infected, his risk score will decrease with a factor 𝑣𝑖,𝑡 and
will eventually decay and reach minimum in 𝑡 = ⌈ 𝑟𝑖,𝑡−Δ𝑡𝑣𝑖,𝑡

⌉ time
instances. This accounts for the fact that risk to and from such
people is minimized when they are in isolation. For simplicity, at
𝑡 = 0 (or the initial condition) for all people we assign them as
susceptible and their risk score to 𝑟𝑖,0 = 1. As the actual infection
state of a person is unknown, the idea of social distancing mandates
to maintain a certain distance even if the person is susceptible.
Maintaining social distancing reduces the possibility of getting
infected. We assign a non zero value to 𝑟𝑖,0 to ensure that social
distance is maintained and our model captures it. For simplicity,
let 𝑟𝑖,0 = 1. As and when a person is officially tagged infected, we
assign 𝑟𝑖,𝑡 = 2. Note that, a low value of 𝑟𝑖,𝑡 , is achieved when all the
neighbors are susceptible. For a new person joining in, we assume
that he is a susceptible person.

Our method only considers ego network of a person for the cal-
culation of the risk score. This enables all the smartphones involved
to compute their individual risk scores simultaneously.

4 EVALUATION AND VALIDATION
In this section we provide an evaluation and validation of our risk
model using a real-world dataset.

4.1 Dataset
While there are many datasets which have previously been used to
study epidemic spread, specially smartphone based datasets that
use Call Detail Records (CDRs) and GPS location information, [5],
they are (i) not widely used [23], and (ii) mostly generated from a

3https://www.mohfw.gov.in/pdf/DGSOrder04of2020.pdf

random population sample which do not reflect true neighborhood
size. Instead, we use a dataset of 789 individuals (including students
and teachers) obtained on a single day in an American high school
that has 158 rooms [25], which has previously been used to study
spread of infectious diseases [28]. Here each point of interest (POI)
is considered to be a room in the school. The dataset is mainly used
to study human contact network for infectious disease transmission.
The dataset is collected between 6AM to 4:30PM at an interval of
20 seconds. The granularity of positioning information available
is at the level of rooms, and hence, each individual is geo-tagged
with the room ID they are in at a particular epoch. We consider
that contact events occur between individuals whenever they are
in the same room, and all individuals present in a particular room
at a given epoch are connected to each other.

The temporal distribution of individuals in the dataset is shown
in Fig. 1. Fig. 1(a) shows the heatmap of number of people present in
a room at different epochs. The white color represents that nobody
was present in a room at the particular epoch. Fig. 1(b) presents
total number of people in a school at a given epoch. A sudden
increase and a sudden drop in the number of people accounts for
the beginning of the school in the morning when people arrive,
and the end of the day, when they went back from school. Fig. 1(c)
presents the maximum number of rooms occupied by people. Note
that at maximum only ≈62% rooms are occupied. Fig. 1(d) presents
ratio between number of people in the school and rooms occupied
at a given time. The maximum average density of people in a room
is 9. A sudden increase at the end of the day is because most of the
people were present in a single room. Fig. 1(e) presents number
of times a given room was occupied during the data collection
period. From the figure we infer that (i) some rooms were always
empty and nobody went to those rooms, (ii) the entire population
is concentrated in only a few rooms and after certain time period
there is an exponential decrease in the population indicating the
end of classes in the school, (iii) during the day, rooms gradually
start to fill up and there is an exponential rise in the population
size.

4.2 Dynamics of epidemic spread on the
contact network

We evaluate the proposed risk score using both SI (Susceptible-
Infected) and SIS (Susceptible-Infected-Susceptible) models. Here,
we note that, since the risk score looks at contact events only, we
do not evaluate an SEIR (Susceptible-Exposed-Infected-Recovered)
model, as identification of "exposed" and "recovered" states are not
the focus of the model.

Let 𝑆𝑖,𝑡 be the fraction of people that are susceptible in a region
𝑖 at time 𝑡 , 𝐼𝑖,𝑡 be the fraction of population that is infected in a
region 𝑖 at time 𝑡 , 𝑁𝑖,𝑡 = 1 be the faction of total population in
the region at time 𝑡 , 𝛽𝑖 be the infection rate in the region 𝑖 , and
𝛾𝑖 be the recovery rate in the region 𝑖 . Note that at any given
point of time 𝑁𝑖,𝑡 = 𝑆𝑖,𝑡 + 𝐼𝑖,𝑡 because we consider only two states,
susceptible and infected. The change in the fraction of susceptible
and infected people over time is given by equation (3) [10]. Here the
underlying assumptions are that there is a homogeneous mixing of
the population and no birth and death happens (the total population
is fixed).

4
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Figure 1: Temporal distribution of people in the rooms. (a)
Heatmap showing number of people in each roomover time.
The white color represents empty room at the particular
epoch. (b) Total number of people present in the school over
time. (c) Total number of room occupied in the school over
time. (d) average density of each room. (e) Number of times
a room is occupied.

𝑑𝑆𝑖,𝑡
𝑑𝑡

= − 𝛽𝑆𝑖,𝑡 𝐼𝑖,𝑡
𝑁𝑖,𝑡

+ 𝛾𝐼𝑖,𝑡
𝑑𝐼𝑖,𝑡
𝑑𝑡

= −𝑑𝑆𝑖,𝑡
𝑑𝑡

(3)

4.3 Results
Currently, the exact behavior of exposure and vulnerability param-
eters for pandemics such as COVID-19 is not known. Further, as
the dataset is POI based, actual distances are also not available in
the dataset. Thus, we assume that the exposure parameter for each
person is normally distributed with 𝜇 = 0.5 and 𝜎 = 0.1. Further, the
vulnerability parameter is also normally distributed with 𝜇 = 0.5
and 𝜎 = 0.2.

For our analysis we study following three aspects using different
initial condition, infection rate, and recovery rate. First, we identify
fraction of people who are identified infected using the SIS and SI
epidemic models. This helps us understand the infection spread
over time in the population and understand the dynamics on the
contact network. Second, we measure the ratio between the median
risk scores of infected people and susceptible people. A ratio more
than one indicates that the risk score of infected people is more,
as intended. A higher ratio implies that the risk score can be used
to better identify people who are exposed to infection and have
high probability to get infected. When there are no infections in a
neighborhood, this value tends to 0. Third, we study the fraction of
people that are alerted using our model.

To test and study the above-mentioned aspects, as an initial
condition, the values for 𝐼𝑖,0, 𝛽𝑖 and 𝛾𝑖 used are 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5},
𝛽𝑖 ∈ {0.0, 0.5, 1.0} and 𝛾𝑖 ∈ {0.0, 0.75}. 𝐼𝑖,0 = 0.0 states that there
are no initial infections in the region. 𝛽𝑖 = 0.0 states there are no
transmission happening and the disease does not spread via contact.
On the other hand, 𝛽𝑖 = 1.0 would state that the disease is highly
contagious. Similarly, 𝛾𝑖 = 0.0 would state that there is no recovery

which is equivalent to SI type epidemic model. 𝛾𝑖 = 0.75 would
mean that the recovery rate is 75% (i.e. similar to the recovery rate
of COVID-19 patients in India4). The results presented here are
averaged over 50 simulations runs and conducted using python.

Figures 2 and 3 present results obtained for the above-mentioned
aspects when different values of 𝐼𝑖,0, 𝛽𝑖 and 𝛾𝑖 are used for SIS and
SI models respectively. The 𝛽𝑖 and 𝛾𝑖 values are assumed to not
vary across rooms. Fig. 2 is obtained when 𝛾 = 0.75 while Fig. 3
is obtained when 𝛾 = 0.0. From the Fig. 2, as per SIS model, when
there is no infection, dissemination of infection does not occurs
because subsequent 𝑑𝐼𝑖,𝑡/𝑑𝑡 = 0 (see fig. 2(a)). This lead to ratio of
median risk scores (represented as 𝑟𝑚,𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑/𝑟𝑚,𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 ) to be
0 as there are no infected people (see Fig. 2(b)). The inset Fig. 2(b’)
shows the median risk scores of susceptible people (𝑟𝑚,𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 )
and indicates that, even when there are no confirmed infections,
crowded situations which carry high risk can be identified as having
high risk scores. As our risk model is not dependent on 𝛽𝑖 , 𝛾𝑖 , and
initial infection, via risk score, we are able to detects potential risky
situations (see fig. 2(c), 2(f), and 2(i)) which epidemic models such
as SIS model are not able to detect. For cases when 𝐼𝑖,0 ≥ 0.01
and 𝛽𝑖 ∈ {0.0, 0.5, 1.0}, we observe that infections either die off
(for 𝛽𝑖 = 0.0) or achieve stability (for 𝛽𝑖 ∈ {0.5, 1.0}, see fig. 2(d)
and 2(g)). The reason for reduction in infections is the recovery
rate, while for stability it is the low number of people present when
𝑒𝑝𝑜𝑐ℎ > 1500. The ratio of median risk scores for different 𝛽𝑖 and
𝐼𝑖,0 ≥ 0.01 is shown in fig. 2(e) and 2(h)) where we observe that after
few epochs the ratio is < 2 and even reaches < 1 in short duration.
This behavior is because (a) the median value of infected identified
by SIS model is less than the median value that of susceptible people
and (b) the number of infected is less that number of susceptible.
From the fig. 2(f) and 2(g) we also see that, irrespective of the
epidemic state, most of the people are at high risk.

On the other hand, from Fig. 3, we see that when there is no
recovery (i.e., 𝛾𝑖 = 0.0) and when 𝐼𝑖,0 = 0, the behavior is similar
to previous scenario (see fig. 3(a), 3(b), 3(b’), 3(c), 3(f), and 3(i)).
Nonetheless, when 𝐼𝑖,0 > 0.0 and 𝛽𝑖 ≠ 0.0, the infections eventually
reach entire population which is true as there is no recovery (see
fig. 3(d) and 3(g)). Further, in this case, due to the above-mentioned
reason, ratio of median risk scores is also high (see fig. 3(e) and 3(h)).
Ratio equal to 1 is achieved when 𝛽𝑖 = 0.

As the results presented here show, the growth in risk score
values increases when there is increased contact of susceptible
individuals with infected individuals. Further, even in situations
where infections are unknown, the risk score values are shown
to grow when there are more crowded situations and population
movement among those. Thus, the risk score values can be used
for managing infection spread, even before confirmed infections
are identified.

5 RISK SCORE IMPLEMENTATION USING
SMARTPHONES

In this section, we demonstrate how the proposed risk score can be
implemented as part of a smartphone based infection tracking ap-
plications. There are two main components required for estimation

4https://www.financialexpress.com/lifestyle/health/indias-covid-19-recovery-rate-
nears-75-case-fatality-rate-one-of-the-lowest-globally-at-1-86/2063108/
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Figure 2: Results for SIS epidemic model, 𝛽 ∈ {0.0, 0.5, 1.0}, 𝛾𝑖 = 0.75 and 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5}

of the risk score on a smartphone - (a) aggregation of risk scores of
neighboring smartphones, and (b) computation of the risk score of
the smartphone itself. Similar to the infection tracking applications
used for COVID-19, we consider that estimation of the exposure is
done using BLE. However, unlike existing applications which use
centralized data repositories to obtain risk scores of neighboring
smartphones (i.e. if they are confirmed to be infected), using our
approach, each smartphone can (a) periodically broadcast its own
risk score, by embedding this value in the BLE advertising packets,
and (b) periodically update its own risk score by aggregating the
risk scores of all other smartphones in its neighborhood. Such an
approach has the following advantages:

• The risk score computation does not need to depend on a
centralized database containing information about infected
individuals, which might be outdated.

• The risk score reflect encounters not just with confirmed
individuals, but also present environments that are risky
from the perspective of infection spread.

• Our approach is better suited for privacy preservation, since
no information pertaining to the identity of individuals is
stored or communicated.

Next, we provide details on the design of the BLE advertising
packet as well as how risk score computation can be done individu-
ally by a smartphone application. For the purpose of this discussion,
we refer to the smartphone performing the risk computation as

6
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Figure 3: Results for SI epidemic model, 𝛽 ∈ {0.0, 0.5, 1.0}, 𝛾𝑖 = 0.0 and 𝐼𝑖,0 ∈ {0.0, 0.01, 0.5}

Figure 4: BLE Packet Format

the ego node, and all other smartphones in its vicinity as neighbor
nodes.

5.1 BLE advertising packet
Existing infection tracking techniques record the BLE Media Access
Control (MAC) addresses of nearby smartphones [14] and compare
them with a centralized database of infected individuals. Instead,

we discuss how we use the BLE advertising packet to communicate
risk score values.

The BLE advertising packet allows including optional payload of
up to 31 bytes [17]. We use these available bytes for broadcasting
the risk score. Our payload includes:

(1) A 128-bit unique identifier (UUID) which is a fixed value
used to identify the service, enabling each smartphone to
filter out all nearby beacons broadcasting the risk score.

(2) A 6 bytes long Risk score which includes the risk score
value rounded to two decimal places and prefixed by “r”.

(3) A 5 bytes long weight of the neighbor which includes the
neighbor weight value rounded to two decimal places and
prefixed by “w”.

7



COVID-19, November 3, 2020, Seattle, WA, USA Agarwal and Banerjee

RSSI Neighbor weight
> -55 dbm 0.8
> -63 & ≤ -55 dbm 0.5
> -75 & ≤ -63 dbm 0.1
≤ -75 dbm 0.0

Table 1: Neighbor exposure estimation from RSSI values of
BLE advertisements received from neighbors

Fig. 4 shows the payload format of the BLE advertising packet.

5.2 Risk score computation
In addition to the risk scores obtained from the BLE advertisements
from the neighbors, the weight of the neighbors, and exposure
caused by the neighbors are also required for the purpose of risk
score computation, along with the vulnerability of the node itself.
Note that here “node” means the smartphone.

5.2.1 Neighbor exposure. The exposure from a neighbor is an esti-
mation of the likelihood of a transmission event from a neighbor. For
infectious diseases such as COVID-19, the likelihood of transmis-
sion increases with close contacts. While BLE signal characteristics,
such as received signal strength indication (RSSI) and attenuation,
can be used for distance estimation, they are known be noisy es-
timators [18]. Hence, for the purpose of estimation of exposure
from the neighbor, we use a coarse grained mapping, similar to
those used in the Exposure API [7]. Based on the existing studies,
Table 1 shows how the exposure values can be mapped from the
RSSI values [15]. A higher RSSI values maps to a higher exposure
from a neighbor.

5.2.2 Neighbor weight. The neighbor weight is an estimate of the
likelihood of a neighboring node to be infectious, which can de-
pend on a range of factors, such as the prevalence of preexisting
diseases, age, etc. If such information is available, the derived neigh-
bor weight is included in the BLE advertising packet. However,
while such information may not always be available at an individ-
ual level, approximate measures are often available at a population
level, which can be used as fixed values for all smartphones in a
geographic region. For instance, neighbor weight may be derived
from the basic reproduction number (R0) [9] value for a particular
epidemic for a given geographical region.

5.2.3 Vulnerability. The vulnerability of the ego node is an esti-
mate of how quickly an individual can recover when exposed to
infection, and as with the neighbour weight, this depends on a
range of factors such as preexisting conditions, age, etc, as well as
the nature of the disease itself [3]. When available, such informa-
tion is incorporated in the computation of the risk score by the ego
node.

Currently, the only data shared between the smartphones are
the neighbor weights and risk score values. These values are com-
puted on individual smartphones and shared with the neighbors.
As no other parameter is shared other than computed values of
neighbor weights and risk score and no other information about
the neighbor is shared, we enable privacy by design. As a proof of

concept implementation, we can also provide an alpha version of a
smartphone application upon request for the readers to test.

6 FUTURE DIRECTIONS
While the risk score proposed here focuses on parameters that can
be readily measured using smartphones, it can be developed further,
both in terms of increasing it’s accuracy towards risk estimation,
as well as applying it to individual use cases, which we highlight
in this section.

6.1 Increasing accuracy of risk score
The accuracy of the risk score proposed in this paper can also
be increased by incorporating additional contextual information,
where available. Some examples of this are:

• Indoor and Outdoor location detection: The likelihood
of infection spread has been known to be higher in indoor
environments compared to outdoor [28]. This can be incorpo-
rated into the risk score by first, automatically detecting the
indoor/outdoor context [1], and secondly, by incorporating
it into the risk score itself.

• Identification of exposure context: As outlined previ-
ously in section 5.2, by identification of the infection context
in real-time, the risk score computation can be made more
accurate. This can include detection of respiratory symptoms
to better estimate the exposure [16, 29].

In addition to the points above, a general challenge with all in-
fection tracking applications is that they do not cater to the entire
population, since people may not always have access to smart-
phones and other IoT devices.

6.2 Use cases
The proposed risk score is applicable towards monitoring and man-
aging the spread of infection for population groups, such as over a
geographical region, as well as for individuals.

(1) Risk score at different spatial scale: The proposed risk
score, in addition to computing score of an individual can
be used to compute the risk score at any spatial scale (i.e.,
a country, a city, a building, a house, a room). For instance,
considering 𝐴𝑎 be the area for which risk score has to be
computed, such as a district, and let 𝐿𝑎 be the group of people
in that region at time 𝑡 . The risk score of region 𝐴𝑎 at time 𝑡
is defined as equation 4.

𝑟
𝐴𝑎

𝑡 =

∑
∀𝑖∈𝐿𝑎 𝑟𝑖,𝑡
| |𝐿𝑎 | |

(4)

Here, | |𝐿𝑎 | | represents the number of people in𝐴𝑎 . Consider
a region, 𝑅 to be comprised of many 𝐴s, the total population
at time 𝑡 , 𝑁 𝑡 is thus

∑
𝑖∈𝑅 | |𝐿𝑖 | |. Some examples include:

(a) Monitoring of geographical regions by government au-
thorities: As evidenced by the COVID-19 pandemic, the
infection spread often starts from small geographical re-
gions, which can grow exponentially if early actions are
not taken. Our proposed risk score can be used to obtain an
early estimate of the likelihood of infection transmissions
within a geographical region. Subsequently, preventative
actions, such as increased testing, can be taken, without
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even resorting to lockdowns that have economic and social
impacts.

(b) Monitoring of individual buildings: An important as-
pect of managing the spread of infections is to reduce the
likelihood of spread in controlled environments, such as
office buildings, hotels, hospitals, etc. In such scenarios,
risk score can be used to monitor behavior of individuals
within such a region, and take quick actions even before
any infection is confirmed. Some examples of such use
cases are:
(i) Hotels: Guest movements and interactions among guests

at hotels can have significant consequences to the in-
fection spread in a pandemic, as has been seen in the
case of COVID-19 [30]. The risk score can be used to act
quickly by enforcing close monitoring of the individuals
who are found to be in risky situations.

(ii) Hospitals: In order to handle increasing case loads during
a pandemic, hospitals typically have dedicated wards.
In such cases, it is critical to minimize the likelihood
of transmission from such dedicated wards to other
wards in the hospital [24], which can be done through
monitoring of the risk scores of patients, doctors and
other hospital staff.

(iii) Office buildings: Managing the recovery from a pan-
demic is equally important to managing it’s spread, and
the risk score can be used as a part of the plans used for
businesses and office buildings [31].

Similar scenarios may be envisioned for other closed en-
vironments, such as residential buildings, supermarkets,
shopping malls, airports, etc.

(2) Individual monitoring: Risk score can also be used to pro-
vide real-time alerts to individuals to take action. For in-
stance, it can be used to provide prompts to wear mask if
one is detected to move from a less risky region to more risky
one. Further, risk score can be used to provide personalized
alerts for individuals. For instance, vulnerable people (i.e.
who are likely to be affected more due to pre-existing condi-
tions), can be alerted early by using a lower alert threshold.

7 CONCLUSION
In this paper, we introduced a risk score that estimates infection
propagation by leveraging the neighborhood of an individuals at
a given time. On top, our risk score also takes into consideration
factors transmission likelihood and vulnerability to a disease. Our
results show that our risk score is able to capture potential risky sit-
uations. To further leverage our risk score we demonstrate how our
risk score can be implemented in a contact tracing applications and
as a proof of concept make it available upon request. Nonetheless,
as future directions, we provide use cases and potential parameters
that can be included in the risk score to make it more robust.
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